Механизация водоснабжения животноводческих ферм и комплексов. Ремонт машин и оборудования животноводческих ферм. Определение потребности фермы в воде

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Реферат

по дисциплине: « Т ехнология животноводства»

Тема: МЕХАНИЗАЦИЯ ВОДОСНАБЖЕНИЯ ЖИВОТНОВОДЧЕСКИХ ФЕРМ И ПАСТБИЩ

Работу выполнил:

Студент Кириллов И.А.

Общие сведения о воде

Один из наиболее крупных потребителей воды - сельское хозяйство, и в частности животноводство. Потребность в воде животноводства в десятки раз выше, чем населения. Расход воды в сельскохозяйственном производстве очень значителен. Так на получение 1 т молока он составляет 5 ... 10 т, на промывку 1 т соломы при выщелачивании - 50 т, на производство 1 т мяса говядины - 50 т, на выращивание 1 т картофеля - 300 т, на выращивание 1 т пшеницы - 1000 т. вода ферма водозаборный водонапорный

На животноводческих и птицеводческих фермах, фабриках и комплексах вода расходуется на производственно-технические нужды (поение животных и птицы, приготовление кормов, мойку оборудования, уборку помещений, мойку животных и др.), отопление, хозяйственно-питьевые нужды обслуживающего персонала (в бытовых помещениях, умывальнях, душевых, туалетах и др.) и противопожарные мероприятия.

Правильная организация водоснабжения имеет исключительное значение для эффективной работы фермы, так как обеспечивает нормальное выполнение производственно-зоотехнических процессов и противопожарную безопасность, улучшает условия содержания животных, повышает производительность и культуру труда обслуживающего персонала, увеличивает продуктивность животных, улучшает качество продукции и снижает ее себестоимость.

Качество воды в зависимости от назначения должно удовлетворять определенным требованиям. Его оценивают по органолептическим свойствам, а также по химическому и бактериологическому составу воды.

К органолептическим свойствам воды относятся: мутность, цветность, привкус и запах.

Мутность воды зависит от количества находящихся в ней взвешенных веществ и выражается в мг/л.

Цветность воды зависит от имеющихся в ней органических или минеральных механических примесей и выражается в градусах.

Привкус и запах воды вызываются присутствием в ней органических веществ, минеральных солей, а также растворенных газов и определяется по пятибалльной системе.

Химический состав воды характеризуется общей минерализацией, активной реакцией, жесткостью и окисляемостью. Общая минерализация зависит от суммарного количества растворенных в воде минеральных и органических веществ. Жесткость воды обусловлена содержанием растворенных в ней солей кальция и магния.

Бактериологический состав воды характеризуется количеством содержащихся в ней болезнетворных и сапрофитных бактерий.

Требования к качеству питьевой воды изложены в ГОСТах.

Определение потребности фермы в воде

Для выбора размеров и параметров сооружений системы водоснабжения необходимо знать характер и число потребителей нормы суточного расхода воды, а также режим ее потребления в течение суток.

Расход воды в течение суток, летом и зимой неравномерен: днем и летом больше, ночью и зимой меньше.

Для расчета водопроводных сооружений и оборудования необходимо знать максимальные расходы воды: суточный, часовой и секундный.

Максимальный суточный расход воды (м 3) определяют по формуле

Q сут.max =Qсут.ср б сут,

где б сут - коэффициент суточной неравномерности водопотребления (принимают равным 1,3).

Часовые колебания расхода воды учитываются коэффициентом часовой неравномерности бч=2,5. Максимальный часовой расход (м 3)

Q ч.max =Q сут.max б ч /24,

Правильный выбор Q сут.max и Q ч.max имеет важное значение. При повышенных коэффициентах система водоснабжения обходится дорого, а при пониженных - возникают перебои в подаче воды.

Максимальный секундный расход (м 3)

Q с.max =Q ч.max /3600,

По максимальному суточному расходу выбирают вместимость водонапорных баков и резервуаров, оборудование станции первого подъема, по максимальному часовому расходу - оборудование станции второго подъема, по максимальному секундному расходу - диаметр труб.

Расход воды на животноводческих фермах тесно связан с принятой технологией производственных процессов. Так, на распределение суточного расхода воды на фермах по часам большое влияние оказывает кратность кормления и доения, при которой возникают максимальные значения ("пики") водопотребления. При больших колебаниях расхода это создает неблагоприятные условия работы водопроводных сооружений и оборудования. Чем совершеннее организация технологических процессов на ферме, тем лучше сглаживаются неравномерности расхода воды. Для создания оптимальных условий работы системы водоснабжения необходимо составить график потребления воды на ферме с таким расчетом, чтобы изменение расхода воды по отдельным часам суток было достаточно равномерным. Это достигается рациональным распределением по часам суток технологических операций, на которые расходуется вода. Например, такие работы, как гидросмыв навоза и уборку помещений, выполняют по сдвинутому режиму.

Режим водопотребления (колебание расхода воды в часы суток) определяют для расчета сооружений системы водоснабжения. Неравномерность потребления воды в течение суток изображают в виде таблиц или графиков. Расходы воды по часам суток часто выражают в процентах от суточного расхода воды. Такие таблицы или графики составляют на основании многолетних наблюдений, замеряя расход воды в течение суток.

Суточный график водопотребления на одной из животноводческих ферм показан на рисунке

Суточный график водопотребления

На противопожарные нужды расход воды устанавливают, руководствуясь степенью огнестойкости построек. Запас воды должен обеспечивать непрерывную трехчасовую работу пожарных брандспойтов.

Максимальный срок восстановления неприкосновенности противопожарного запаса воды должен быть не более 72 ч.

Водопроводы на фермах обычно рассчитывают только на хозяйственные нужды, а для противопожарного водоснабжения устраивают открытые водоемы или резервуары, где держат неприкосновенный запас воды. Число, вместимость и расположение резервуаров согласуют с инспекцией пожарной охраны.

Состав машин и инженерных сооружений зависит в основном от источника водоснабжения и требований, предъявляемых к качеству воды.

При водоснабжении животноводческих ферм наибольшее распространение получили местные и централизованные хозяйственно-производственные системы водоснабжения с подземными источниками воды и пожаротушения из противопожарных резервуаров мотопомпами или автонасосами.

В свою очередь, централизованные системы могут быть частью группового сельскохозяйственного водопровода, обеспечивающего водой несколько населенных пунктов, ферм и других производственных объектов, расположенных, как правило, на значительном расстоянии друг от друга.

Схема водоснабжения - это технологическая линия, связывающая в той или иной последовательности водопроводные сооружения, предназначенные для добывания, перекачки, улучшения качества и транспортировки воды к пунктам ее потребления. Воду можно подавать к потребителям по различным схемам.

В зависимости от конкретных условий (рельефа местности, мощности источника водоснабжения, надежности электроснабжения и др.) схемы водоснабжения могут иметь один или два подъема воды, предусматривать хранение регулируемого ее количества в водонапорных башнях или подземных резервуарах, подачу противопожарного запаса воды непосредственно из источника и др.

На рисунке показана возможная схема водоснабжения из открытого или подземного источника для животноводческой фермы.

Система механизированного водоснабжения животноводческой фермы (комплекса) состоит из водозабора с насосной станцией, разводящей сети и регулирующего сооружения. В некоторых случаях систему водоснабжения дополняют сооружениями по очистке и обеззараживанию воды. В сельском хозяйстве наибольшее распространение получили локальные системы, когда отдельный объект обслуживается соответствующей системой водоснабжения. Они, как правило, имеют одну ступень подъема.

Представленный па рисунке состав инженерных сооружений непостоянен, его можно изменить в зависимости от качества воды в источнике, рельефа местности и прочих условий.

Например, очистные сооружения, резервуары чистой воды и насосная станция второго подъема могут отсутствовать, если качество воды в источнике соответствует ГОСТу на питьевую воду.

Окончательный выбор той или иной схемы водоснабжения в каждом конкретном случае должен быть обоснован технико-экономическим расчетом. К строительству принимается вариант с наименьшими капитальными и эксплуатационными затратами.

Схема механизированного водоснабжения:

а - из открытого источника; б - из подземного источника;

1 - источник воды; 2 - водозаборное сооружение; 3 - насосная станция первого подъема воды; 4 - очистное сооружение; 5 - резервуар для чистой воды; 6 - насосная станция второго подъема; 7 - напорное сооружение; 5 - внутренний водопровод; 9 - водораздаточные устройства; 10 - внешний водопровод.

Источники водоснабжения и водозаборные сооружения

Источники водоснабжения могут быть поверхностными (реки, озера, водохранилища и др.) и подземными (родниковые, грунтовые и межпластовые воды). Они должны обеспечивать наибольший суточный расход воды потребителями независимо от времени года и условий потребления.

При выборе источника централизованного водоснабжения предпочтение отдают подземным водам по сравнению с поверхностными. Это объясняется повсеместным распространением подземных вод и возможностью использования их без очистки. Поверхностные воды применяют реже, так как они более подвержены загрязнению и перед подачей потребителю нуждаются в специальной очистке.

Подземные воды в зависимости от условий их залегания делятся на грунтовые и межпластовые (см.рис)

Грунтовые подземные воды залегают на первом от поверхности земли водонепроницаемом слое, практически не защищены от загрязнения и имеют резкие колебания дебита. Малые запасы грунтовых вод и их санитарная ненадежность делают их непригодными для использования в качестве источников централизованного водоснабжения. Межпластовые подземные воды (напорные и безнапорные) отличаются высоким качеством. Они расположены в водоносных слоях, имеющих одно или несколько водоупорных перекрытий. Обычно эти воды залегают на значительных глубинах и, фильтруясь через почву, освобождаются от бактериальных загрязнений, а также от взвешенных веществ. Meжпластовые воды, как правило, подают на ферму без очистки, поэтому облегчается эксплуатация такой системы водоснабжения и существенно снижается ее стоимость.

Схема залегания подземных вод:

1 - водоупорные слои; 2 - водоносный горизонт межпластовых напорных вод (артезианских); 3 - водоносный горизонт межпластовых безнапорных вод; 4 - грунтовые воды; 5 - колодец, питающийся грунтовой водой; 6 - колодец, питающийся межпластовой безнапорной водой; 7 - колодец, питающийся артезианской водой; 8 - зоны питания водоносных горизонтов.

Если межпластовых вод недостаточно или они по качественному составу не могут использоваться для хозяйственно-питьевого водоснабжения, устраивают водопроводы из открытых водоемов (рек, озер, водохранилищ). В южных районах страны источниками централизованного водоснабжения могут служить оросительно-обводнительные каналы. Место водозабора необходимо располагать выше населенного пункта по течению реки или канала. Водопой скота устраивают на водоемах, не используемых для водоснабжения населения. Если таких водоемов нет, делают лотки, отводящие воду из водоема к местам водопоя. При выборе источника водоснабжения необходимо учитывать технико-экономические показатели: стоимость сооружений и оборудования для подъема, обработки и транспортировки воды, затраты на эксплуатацию и ремонт и др. Например, стоимость 1 м 3 воды из поверхностных источников с устройством очистки примерно в 3 ... 5 раз выше, чем стоимость воды из межпластовых источников, которую можно использовать без очистки.

Иногда в качестве источника водоснабжения используют атмосферные осадки (дождь или снег).

Источник водоснабжения выбирают в соответствии с требованиями ГОСТа и согласовывают с органами Государственного санитарного надзора. Выбрав источник водоснабжения, определяют его подачу.

Подачей (дебитом) источника называют объем жидкости, поступающей из него в единицу времени.

Водозаборные сооружения служат для забора воды из источника. Для забора воды из поверхностных (открытых) источников устраивают береговые колодцы или простейшие водозаборы, а для забора воды из подземных (закрытых) источников - шахтные, буровые (трубчатые) и мелкотрубчатые колодцы. Подземные воды, выходящие на поверхность, собирают в каптажные колодцы.

Шахтные колодцы (см.рис) служат для забора подземных грунтовых вод, залегающих на глубине до 30 ... 40 м при толще водоносного слоя 5 ... 8 м. Шахтный колодец состоит из оголовка 4, шахты 2 и водоприемной части 1.

Оголовок (верхняя, надземная часть колодца) защищает колодец от попадания загрязненных поверхностных вод. Вокруг оголовка устраивают глиняный замок 5 шириной 1 м и глубиной не менее 1,5 м, а в радиусе 2 ... 2,5 м делают булыжную отмостку по песчаному основанию с уклоном от оголовка 0,05 ... 0,10.

Водоприемная (нижняя) часть заглубляется в водоносный слой не менее чем на 2 ... 2,5 м. В зависимости от глубины погружения водоприемной части шахтные колодцы разделяют на полные (совершенные) и неполные (несовершенные).

Водоприемная часть полного шахтного колодца опущена на всю глубину водоносного слоя и опирается на водонепроницаемый пласт. Водоприемная часть неполного шахтного колодца только частично погружена в водоносный слой и не достигает водонепроницаемого пласта.

Водозаборные сооружения:

а - шахтный колодец: 1 - водоприеминя часть; 2 - шахта (ствол); 3 - вентиляционная труба; 4 - оголовок; 5 - глиняный замок; б - буровая скважина: 1 - устье; 2 - эксплуатационная колонна; 3 - фильтр; 4 - отстойник.

Если один шахтный колодец не обеспечивает потребность в воде, то устраивают групповой шахтный колодец. При этом воду забирают из центрального колодца, соединенного с остальными самотечными или другими трубами. Расстояние между колодцами колеблется в пределах 10 ... 60 м в зависимости от толщины водоносного слоя и его фильтрующей способности.

Буровые (трубчатые) колодцы устраивают для забора воды из обильных водоносных пластов, залегающих на большой глубине (50 ... 150 м). Скважина состоит из устья 1 эксплуатационной колонны 2, фильтра 3 и отстойника 4.

Стенки скважины предохраняют от обрушения, укрепляя их обсадными трубами, соединяемыми муфтами. Такие трубы изолируют водоносные горизонты, непригодные для водоснабжения.

Тип фильтра выбирают в зависимости от гранулометрического состава водоносных пород. Фильтры должны обладать хорошей пропускной способностью.

Подача шахтных и буровых (трубчатых) колодцев не должна превышать дебита источника. Для определения подачи колодцев проводят пробную откачку, во время которой контролируют изменение уровня воды в колодце при помощи приборов.

Зона санитарной охраны вокруг места водозабора включает в себя территорию, на которой расположены водозаборные сооружения, и водопроводную станцию. В нее входит также участок водоема на расстоянии 200 м выше и ниже места водозабора. Этот участок задерживает поступление загрязнений с берега непосредственно к водозабору.

На территории зоны санитарной охраны разрешается строительство только тех сооружений, которые непосредственно связаны с нуждами водопровода.

Подземные источники водоснабжения окружают зонами санитарной охраны. В такую зону входит территория, на которой расположен водозабор, и все головные водопроводные сооружения (скважины и каптажи, насосные станции, установки для обработки воды, резервуары). Например, зона санитарной охраны артезианских скважин составляет около 0,25 га, причем радиус территории должен быть не менее 30 м вокруг скважины. При использовании грунтовых вод размеры зоны санитарной охраны увеличиваются до 1 га при радиусе 50 м.

На территории зоны санитарной охраны разрешается строительство только тех сооружений, которые непосредственно связаны с нуждами водопровода. Вся территория зоны планируется так, чтобы поверхностный сток отводился за границы этой территории и поступал в водоем за пределами ее нижней границы.

На участке водоема, входящем в зону санитарной охраны, запрещается спуск сточных вод (даже в очищенном виде), а также бытовое использование водоема.

Санитарный режим на территории зоны санитарной охраны подземных источников должен быть таким же, как и на территории зоны санитарной охраны открытых источников водоснабжения.

Установки для очистки и обеззараживания
воды на фермах и комплексах

Часто вода поверхностных источников, а иногда и подземных, например грунтовая вода, требует дополнительной обработки - опреснения, умягчения, очистки и обеззараживания.

Опреснение соленых вод имеет очень большое значение для пустынных и полупустынных пастбищ страны, где мало источников пресной воды. В сельскохозяйственном водоснабжении применяют кристаллизацию (искусственное вымораживание), дистилляцию и электродиализный метод опреснения.

Для опреснения воды применяют электродиализ. При этом ионы солей удаляются из воды под действием поля постоянного электрического тока. Для электродиализа разработаны установки производительностью от 10 до 600 м 3 /сут, способные обеспечить понижение минерализации воды с 2,8 ... 15 г/л до 0,9 ... 1 г/л.

Для очистки воды применяют фильтры, контактные осветлители.

Обеззараживание (уничтожение болезнетворных микроорганизмов) достигается хлорированием, озонированием и ультрафиолетовым облучением воды.

При хлорировании применяют хлорную известь, жидкий хлор и поваренную соль (из соли получают гипохлорит натрия). Для хлорирования предназначены вакуумные хлораторы ЛК и электролизные хлоридные установки типа ЭН и ЭДР.

Озонирование - современный и универсальный метод обработки, при котором вода одновременно обесцвечивается и обеззараживается, устраняется ее привкус и запах. Озон - нестойкий газ, поэтому наиболее экономично получать его на месте обработки воды. Озонируют воду на крупных очистительных станциях.

Для ультрафиолетового облучения воды применяют установки с аргоно-ртутными лампами типа БУВ. Эти установки выпускаются закрытого типа с погруженными в воду источниками облучения и открытого типа. Погружаемые в воду лампы размещают в кварцевых чехлах. Установки можно подключать в любом месте сети водоснабжения.

Применяют и комплексные установки, обеспечивающие полную обработку воды (осветление, обесцвечивание, удаление запахов и привкусов, опреснение, обеззараживание), например, универсальную установку, состоящую из электрического коагулятора, антрацитового, ионитового и угольного фильтров, бактерицидного аппарата.

Водонапорные сооружения и резервуары

В системе водоснабжения применяются напорно-регулирующие сооружения, предназначенные для создания необходимого напора в разводящей магистрали, регулировки подачи воды в сеть и создания запаса воды на время отключения насосной станции.

На практике применяют два типа напорно-регулирующих сооружений: водонапорную башню и пневматический котел (безбашенное сооружение). В первом случае наружный напор создается за счет поднятия водонапорного бака на необходимую высоту; во втором - за счет давления сжатого воздуха,

заполняющего пространство выше уровня воды в герметически закрытом котле.

Башенная водокачка:

1 - водонапорная башня; 2 - датчик уровней; 3 - пост управления; 4 - станция управления; 5 - насосная (водоструйная) установка; 6 - напорно-разводящая труба.

Сборно-блочные башни-колонны конструкции инженера А.А. Рожновского получили на фермах наибольшее распространение. Башни монтируют на месте из отдельных металлических блоков, изготовленных на заводах.

Нижняя часть башни, утепленная земляной обсыпкой, целиком заполняется водой. Этот запас воды удваивает резервную вместимость башни.

Не утепленную башню применяют там, где температура воды подземных источников не ниже 4 °С и обмен воды в башне происходит не реже одного раза в сутки.

При интенсивной циркуляции вода в башне не замерзает даже при значительном снижении температуры.

Для автоматизации управления к водонапорным башням выпускают аппаратуру, которая поддерживает постоянный запас воды и повышает надежность работы оборудования насосных станций. Сборно-блочная конструкция башни позволяет намного сократить сроки монтажа сооружения и снизить стоимость строительства.

Безбашенные напорно-регулирующие сооружения предназначены для автоматизации водоснабжения животноводческих ферм и других объектов.

На фермах широко распространены безбашенные автоматические водоподъемные установки типа ВУ, например, установка ВУ5-30. Вихревым насосом 7 вода подается в воздушно-водяной бак 6, из которого через водоразборную магистраль поступает к потребителям. Излишки воды накапливаются в баке, сжимая в нем воздух. Как только давление в баке достигнет расчетного реле давления 2 (в нормальном положении контакты реле давления постоянно замкнуты) разомкнет электрическую цепь магнитного пускателя, электродвигатель насоса остановится и вода потребителям будет подаваться под действием сжатого в баке воздуха. При уменьшении давления до определенного значения контакты реле замкнутся и в работу включится насос, который снова начнет подавать воду в бак.

Водоподъемная установка ВУ5-30:

1 - станция управления; 2 - реле давления; 3 - жиклер; 4 - воздушный клапан; 5 - камера смешивания струйного регулятора; 6 - воздушно-водяной бак; 7 - вихревой насос.

Во время работы установки объем воздушной подушки в баке вследствие не плотности соединений и растворения воздуха в воде уменьшается. Это приводит к увеличению частоты включения установки и ускоряет износ электродвигателя и насоса. Для автоматического заполнения бака воздухом служит струйный регулятор запаса.

Установки просты по конструкции, гигиеничны и удобны в эксплуатации, не требуют постоянного обслуживания. Благодаря применению установок ВУ сокращается расход труб, исключается строительство дорогостоящих металлоемких водонапорных башен, себестоимость подачи 1 м 3 воды снижается в 1,5 ... 2 раза.

Для хранения запасов воды иногда используют безнапорные резервуары, из которых вода может подаваться в водопроводную сеть насосами.

Вместимость баков водонапорных башен и резервуаров выбирают в зависимости от суточного расхода воды, характера расходования ее по часам суток и работы насосной станции. Характер расходования воды по часам суток может быть установлен в результате подсчетов значений коэффициентов часовой неравномерности для каждого потребителя с учетом принятого на ферме распорядка дня.

Регулирующая вместимость бака или резервуара зависит от продолжительности работы насосной станции. Расчетами и практикой определено, что бак или резервуар минимальной вместимости может быть выбран в том случае, если насосная станция работает в сутки не менее 16 ... 19 ч.

Внешняя и внутренняя водопроводные сети

Вода из источников водоснабжения водоподъемником подается в водонапорную башню. Этот участок называется напорным трубопроводом. Из башни под действием гидростатического напора она поступает к потребителям и распределяется между ними. Та часть распределительной сети, которая проложена на территории фермы за пределами помещений, называется внешней магистральной водопроводной сетью.

Внешние водопроводные сети делятся на разветвленные и кольцевые.

Разветвленная (тупиковая) сеть состоит из отдельных линий. Вода от водонапорной башни проходит по главной магистрали с ответвлениями, которые оканчиваются тупиками, и поступает к потребителю с одной стороны.

Кольцевая сеть обеспечивает движение по замкнутому кольцу и подводит воду потребителю с двух сторон. Несмотря на то, что длина кольцевых водопроводных сетей больше, чем тупиковых, они имеют значительные преимущества перед тупиковыми и чаще применяются на фермах и комплексах.

Схемы водопроводных сетей:

а - тупиковая; б - кольцевая.

На небольших фермах внешнюю водопроводную сеть часто прокладывают по тупиковой схеме, на крупных фермах и комплексах применяют кольцевую сеть. Внешнюю водопроводную сеть обычно сооружают из чугунных и асбестоцементных труб. Реже применяют стальные трубы. В этом случае их покрывают антикоррозийной изоляцией. При прокладке водопровода соблюдают два правила: трассу выбирают из условия кратчайшей доставки воды потребителю; трубы укладывают на такую глубину, чтобы они не промерзали.

При расчете внешней водопроводной сети определяют оптимальные диаметры труб на отдельных участках сети и потери напора.

Скорость воды в трубах рекомендуется принимать для наружного водопровода диаметром до 350 мм равной 0,4 ... 1,25 м/с, а для труб диаметром более 350 мм -1,25 ... 1,4 м/с; для магистральных труб внутренних водопроводных сетей - 1 ... 1,75 м/с, а для ответвлений к приборам - 2 ... 2,5 м/с.

Потери напора в сети складываются из двух составляющих: линейных и местных потерь. Линейные потери прямо пропорциональны длине трубопровода и гидравлическому уклону. Для облегчения расчетов в справочной литературе имеются таблицы, в которых приведены значения линейных потерь в зависимости от длины трубопровода. Местные потери напора в сети незначительны и составляют 5 ... 10 % от потерь по длине трубопровода.

Внутренние водопроводные сети предназначены для непосредственного распределения воды между потребителями внутри зданий. Схема разводки труб и виды водораздаточных приборов, устанавливаемых на водопроводной сети, зависят от технологических операций, на которые расходуется вода. Для бесперебойной подачи воды на производственные нужды внутренние водопроводные сети, как правило, выполняют кольцевыми. Если по условиям производства допускается перерыв в подаче воды, то можно применять тупиковые водопроводные сети.

Кольцевые сети внутренних водопроводов производственных зданий крупных ферм присоединяют к кольцевой сети наружного водопровода двумя вводами раздельно к разным участкам наружной сети.

Для устройства внутренних водопроводов в основном применяют стальные оцинкованные водогазопроводные трубы, соединяемые на резьбе или сваркой.

Водопроводные сети перед сдачей в эксплуатацию испытывают на прочность и герметичность, а установленную на них арматуру - на исправность ее действия. Испытания проводят под давлением воды, создаваемым в сети гидравлическим прессом.

Наружные водопроводные сети из чугунных, стальных и асбестоцементных труб испытывают 2 раза: при открытых траншеях и после их засыпки.

Технологическое оборудование и арматура внутренних водопроводных сетей

К технологическому оборудованию и арматуре внутренних водопроводных сетей животноводческих помещений относятся автопоилки, водонагреватели, различные емкости, водоразборные краны, регулирующие вентили и др.

В зависимости от поголовья, режима поения и дебита водоисточника определяют размеры водопойной площадки и длину корыт. Длина L (м) водопойного корыта

где n - число животных; l - фронт поения ну одно животное, м; ф - продолжительность поения одного животного, мин; t - допустимая продолжительность водопоя всего пригнанного скота, мин.

Фронт поения (длина участка корыта, рассчитанная на одно животное) для лошадей составляет 0,6 м, для овец и коз - 0,35 м. Продолжительность поения овец и коз - 3 ... 4 мин.

Автопоилки делятся на групповые и индивидуальные.

Групповые поилки применяют для поения коров и молодняка крупного рогатого скота при беспривязном (боксовом) содержании, свиней при крупногрупповом содержании и птицы. Их также используют в летних лагерях и на пастбищах. Групповые поилки могут быть стационарными и передвижными. Они оборудованы корытами или несколькими индивидуальными поилками для поения животных. Принцип действия этих поилок основан на законе сообщающихся сосудов. Уровень воды регулируют в водораздаточных корытах с клапанным механизмом поплавкового типа.

В индивидуальных поилках количество воды, поступающей в поильную чашу, регулируется специальной педалью. Индивидуальные поилки используют для поения крупного рогатого скота (при привязном содержании) и свиней.

Промышленность выпускает около двух десятков различных типов индивидуальных и групповых автопоилок для крупного рогатого скота, свиней, овец и птицы.

Групповая вакуумная автопоилка АГК-12:

1 - полозья; 2 - корыто; 3 - цистерна; 4 - вакуумная трубка.

Групповая автопоилка АГК-12 предназначена для поения крупного рогатого скита. Она выпускается в двух модификациях: для летних лагерей, где водопровода нет, и для поения скота на выгульных площадках ферм с водопроводной сетью.

Поилка состоит из двух установленных на полозьях металлических корыт, соединенных патрубком, и цистерны вместимостью 3000 л, из которой вода самотеком поступает в поильные корыта. На одном из корыт имеется клапанный механизм, автоматически поддерживающий уровень воды в обоих корытах на заданной высоте. Поилка второй модификации цистерны не имеет.

Групповая автопоилка АГС-24 применяется для поения свиней при групповом содержании в зимних помещениях и в летних лагерях. Она состоит из цистерны 1 вместимостью 3,1 м 3 , двух корыт 3 (на 12 поильных мест каждое) и вакуумного устройства, поддерживающего постоянный уровень воды в корытах.

В холодный период года на поилку устанавливают электроподогревающее устройство мощностью 1,2 кВт, позволяющее поддерживать температуру воды в пределах 10 ... 15 °С. Поилка рассчитана для обслуживания 500 свиней.

Групповая автопоилка АГС-24:

1 - цистерна; 2 - салазки; 3 - корыто; 4 - клапаны.

Групповая автопоилка с электроподогревом АГК-4 применяется для поения до 100 голов крупного рогатого скота на выгульных площадках. Она рассчитана на одновременное поение четырех животных и подключается к водопроводной сети.

Групповые поилки различных типов применяются также для овец.

Индивидуальные автоматические поилки используют для поения крупного рогатого скота при привязном содержании и свиней при содержании в клетках.

Для крупного рогатого скота предназначены одночашечные поилки различных конструкций, а для свиней - двухчашечные ПАС-2А и сосковые.

Сосковая поилка в сборе (а) и ее детали (б):

1 - корпус с носком; 2, 4 - резиновые прокладки; 3 - сосок; 5 - клапан; 6 - амортизатор; 7 - упор.

Бесчашечная сосковая автопоилка ПБС-1 используется для поения взрослых свиней при станочном и бесстаночном групповом и индивидуальном содержании, а также на летних выгульных площадках. Она состоит из корпуса 1, который крепится на резьбе к водопроводной трубе под углом 45 ... 60° к вертикали. Внутри корпуса имеется сосок 3, нажимая на который животное пьет воду. Масса поилки всего 0,33 кг. Имеются модификации сосковых поилок для свиней всех возрастных групп. Сосковые поилки работают при давлении в сети 0,01 ... 0,4 МПа. По сравнению с чашечными сосковые поилки имеют ряд преимуществ: они более гигиеничны, просты, удобны в монтаже и надежны.

Вакуумная поилка ПВ для поения цыплят в возрасте до 20 дней состоит из стеклянного баллона с поддоном. Баллон наполняют водой, покрывают поддоном, переворачивают и ставят на пол. Вода из баллона самотеком выливается в поддон, из которого цыплята пьют. Поилка обслуживает до 100 цыплят.

Ниппельная поилка применяется для капельного поения птицы при содержании в клеточных батареях. Она состоит из ниппеля (капельницы), который прикреплен к водопроводной трубе с высверленными в ней отверстиями. На нижнем конце клапана ниппеля образуется капля воды, которую склевывает птица. Давление в водопроводной трубе (0,5 ... 2,0 кПа) поддерживается поплавково-клапанным механизмом. На трубопроводе в пределах одной клетки на 10 голов устраивают три капельницы. Расход воды очень мал. Ниппельные поилки гигиеничны, просты, экономичны и надежны.

Во многих технологических процессах используют горячую и теплую воду для приготовления кормов, поения, машинного доения коров, дезинфекции и мойки животных, дезинфекции доильного и молочного оборудования и др. Для получения воды необходимой температуры применяют проточные водонагреватели или водонагреватели-термосы с порционным нагревом воды.

Наибольшее распространение на фермах и комплексах получили электрические и паровые водонагреватели.

Электронагреватели проточного типа, например ЭВП-2, ЭВАН-100, применяют для быстрого нагрева воды. В них температура воды поддерживается автоматически в пределах от 20 до 95 °С.

Электрические автоматические водонагреватели-термосы типа ВЭТ для порционного подогрева воды и ее хранения применяют чаще всего в поточных линиях доения коров и приготовления кормов. Вместимость термоса 200, 400 и 800 л, температура воды - до 95 °С. В случае необходимости горячую воду из водонагревателя можно смешать с холодной в смесительном кране или смесительных баках.

Емкостные пароводяные водонагреватели используют для получения горячей воды с температурой до 60 ... 65 °С.

Газовые водонагреватели все шире применяют на фермах в последние годы для получения горячей воды, используемой на технологические нужды.

Особое внимание следует обратить на подогрев воды для поения животных в зимнее время. Практика показывает, что подача воды с температурой 4 ... 10 °С из башен Рожновского в систему поения без подогрева приводит к резкому снижению продуктивности животных и часто к возникновению у них простудных заболеваний.

Водонагреватели типа УАП применяют для подогрева воды до 16 ... 18 °С в зимнее время.

Серьезный резерв экономии энергии и повышения продуктивности коров на молочно-товарных фермах - использование для поения воды, прошедшей через охладители для молока. Такая вода имеет температуру 18 ... 24 °С. После охлаждения молока эту воду насосом подают в емкость, установленную в коровнике на высоте 2,4 ... 3,0 м, откуда вода, самотеком поступает к автопоилкам. Чтобы температура воды не снижалась, емкость покрывают теплоизоляционным материалом. Поение коров такой водой повышает их продуктивность на 10 ... 15 %.

Краны применяют для спуска воды из водопроводной сети перед водоразборными приборами, а также для частичного или полного перекрытия прохода в трубах.

Вентили устанавливают на водопроводной сети для выключения ее отдельных участков во время ремонтов или для регулирования и прекращения подачи воды к водоразборным приборам, на нагнетательных трубопроводах насосов и др.

Поливочные или пожарные крапы отличаются от вентилей в основном тем, что снабжены специальной полугайкой для присоединения гибкого поливочного или пожарного шланга.

Обратные клапаны применяют на трубопроводах, когда нужно ограничить движение воды только одним направлением, например перед водонагревателем ВЭТ.

Предохранительные клапаны препятствуют повышению давления в водопроводной сети сверх требуемого предела.

Список литературы :

Электронный учебно-методический комплекс - МЕХАНИЗАЦИЯ В ЖИВОТНОВОДСТВЕ

Размещено на Allbest.ru

...

Подобные документы

    Проектирование генерального плана фермы. Требования, предъявляемые к питьевой воде. Определение ёмкости бака водонапорной башни. Технологические схемы водоснабжения. Расчет запаса кормов и количества хранилищ. Техника безопасности на насосных станциях.

    курсовая работа , добавлен 31.01.2015

    Механизация водоснабжения для животноводческих предприятий. Обзор и анализ существующих способов и схем водоснабжения. Поверхностные (открытые) и подземные (закрытые) водоемы как источники водоснабжения. Технологический расчет, выбор водоподъемника.

    курсовая работа , добавлен 20.05.2010

    Значение микроклимата животноводческих помещений. Организация и механизация доения. Принцип работы и регулировки измельчителя кормов "Волгарь-5". Устройство и принцип работы фуражира ФН-1,4. Методика расчета потребности животноводческой фермы в воде.

    контрольная работа , добавлен 12.02.2011

    Исходные данные и последовательность проектирования линии водоснабжения фермы. Рассмотрение источников снабжения и водонапорных сооружений, насосов и других установок. Расчёт потребности фермы в воде. Составление схемы и расчёт водопроводной сети.

    реферат , добавлен 03.07.2015

    Требования, предъявляемые к плану и участку для строительства животноводческой фермы. Обоснование типа и расчет производственных помещений, определение потребности в них. Проектирование поточных технологических линий механизации раздачи кормов.

    курсовая работа , добавлен 22.06.2011

    Существующие способы снабжения водой ферм. Технологический расчет и выбор оборудования. Графики потребления воды. Расчет водопроводимости, энергетический расчет. Ветеринарные требования и техника безопасности. Схема механизированного водоснабжения.

    курсовая работа , добавлен 24.04.2013

    Классификация товарных свиноводческих ферм и комплексов промышленного типа. Технология содержания животных. Проектирование средств механизации на свиноводческих предприятиях. Расчет плана фермы. Обеспечение оптимального микроклимата, расход воды.

    курсовая работа , добавлен 13.10.2012

    Классификация ферм в зависимости от биологического вида животных. Основные и вспомогательные здания и сооружения в составе фермы крупного рогатого скота. Число персонала, распорядок дня. Оборудование стойловых мест, системы поения и подогрева воды.

    курсовая работа , добавлен 06.06.2010

    Разработка генерального плана животноводческого объекта. Структура стада свинотоварной фермы, выбор рациона кормления. Расчет технологической карты комплексной механизации линии водоснабжения и поения, зооинженерные требования к поточной линии.

    курсовая работа , добавлен 16.05.2011

    Критический анализ существующих схем реализации механизированной технологии водоснабжения и автопоения. Характеристика животноводческой фермы по производству молока поголовьем 672 коровы. Расчет и выбор оборудования для водоснабжения и автопоения.

Ключевые слова

ВОДОСНАБЖЕНИЕ / ЖИВОТНОЕ / КЛАПАН / КОНСТРУКЦИЯ / КОРОВНИК / МОДЕРНИЗАЦИЯ / ПОДДЕРЖАНИЕ ТЕМПЕРАТУРЫ / ПОДОГРЕВ / ПОИЛКА / СИСТЕМА ПОЕНИЯ / APPLYING WATER / ANIMAL / VALVE / CONSTRUCTION / BARN / MODERNIZATION / MAINTAINING TEMPERATURE / HEATING / DRINKING / WATER SYSTEM

Аннотация научной статьи по механике и машиностроению, автор научной работы - Оболенский Николай Васильевич, Шевелев Александр Владимирович

Описано общее состояние систем поения на фермах КРС. Обоснована важность правильного и своевременного поения животных водой, отвечающей зоотехническим требованиям. Произведена классификация применяемых поилок как отечественного, так и импортного производства, рассмотрены наиболее распространенные марки поилок с подробным описанием их устройства и принципа действия. Изучен ряд иностранных производителей оборудования для ферм КРС: ZIMMERMANN Stalltechnik (Германия), «LA BUVETTE» (Франция), «KERBL» (Германия), «Farma» (Дания), «SL» (Польша), «De Boer» (Голландия), Suevia (Германия), Arntjen (Германия), «De Laval» (Швеция), создающих конкуренцию отечественным товаропроизводителям. Рассматривались основные, применяемые на фермах КРС, системы поения , выявлены их преимущества и проблемные места, предложены способы устранения их недостатков. Изучены основные способы подогрева воды в поилках : размещением водонагревателей внутри поилки (локальный нагрев): централизованным нагревом воды с последующей её циркуляцией по всей системе поения ; применением системы «Тёплый родник». Предложен к реализации способ подогрева воды в поилках при помощи индукционного нагревателя. Подробно описана предлагаемая система обеспечения животных теплой водой, ее устройство и принцип действия, отмечены преимущества перед другими способами поддержания оптимальной температуры. Предложены основные направления модернизации систем поения, как-то: 1) применение теплоизоляционных материалов с целью сокращения потерь теплоты; 2) применение электронагревательных элементов с высоким классом электробезопасности в целях избежания возможности получения животными электрического удара; 3) внедрение передовых методов подогрева воды в поилках ; 4) поиск и реализация новых методов поддержания необходимого температурного режима воды в поилках с менее энергозатратными источниками тепловой энергии.

Похожие темы научных работ по механике и машиностроению, автор научной работы - Оболенский Николай Васильевич, Шевелев Александр Владимирович

  • Совершенствование конструкции групповой автоматической поилки для крупного рогатого скота

    2017 / Нигматов Ленар Гамирович, Медведев Валерий Евгеньевич, Бибарсов Владимир Юрьевич
  • Алгоритм управления процессом поения в коровниках

    2018 / B. В. Гордеев, C. В. Вторый
  • Теоретические предпосылки создания нового устройства водоподготовки в помещениях содержания КРС»

    2015 / Осокин Владимир Леонидович, Макарова Юлия Михайловна
  • Обоснование параметров устройства для поения коров подогретой водой

    2018 / Катков Алексей Анатольевич, Лукманов Рамиль Лутфуллович, Ковалев Павел Васильевич
  • Анализ организации водообеспечения коров летом при беспривязном содержании

    2019 / Гордеев В.В., Хазанов В.Е., Вторый С.В., Ильин Р.М.,
  • Параметры, влияющие на процесс нагрева воды в групповой автопоилке

    2013 / Таран Елена Александровна, Орищенко Ирина Викторовна
  • Конструктивные элементы групповой автопоилки, влияющие на скорость гравитационной циркуляции воды

    2011 / Таран Елена Александровна, Орищенко Ирина Викторовна
  • Изучение организации водоснабжения на комплексах по производству говядины

    2016 / Н. Н. Шматко, А. А. Музыка, С. А. Кирикович, А. А. Москалев
  • Разработка системы управления установкой для подготовки питьевой воды в животноводстве

    2017 / Долгих П.П., Кулаков Н.В., Макулькина Ю.Л.
  • Электробезопасность групповой автопоилки с термосифонной циркуляцией воды

    2015 / Орищенко Ирина Викторовна, Таран Елена Александровна

It is described the General condition of the drinking systems on farms cattle. It is substantiated the importance of proper and timely watering animals with water to meet the zoo technical requirements. The classification of drinkers used both domestic and imported, is considered the most common brand of drinkers with a detailed description of their device and principle of action. Studied a number of foreign manufacturers of equipment for cattle farms: ZIMMERMANN Stalltechnik (Germany), «LA BUVETTE» (France), «KERBL» (Germany), «Farma»(Denmark), «SL»(Poland), «DeBoer» (Holland), Suevia (Germany), Arntjen (Germany), «De Laval» (Sweden), creating competition with domestic producers. Addressed the main used on farms cattle watering systems, identified their strengths and problem areas, suggested ways of addressing their shortcomings. Studied the main ways of heating water in the drinking bowls: the placement of the heaters inside the troughs (local heating ): centralized water heating with the subsequent circulation throughout the drinking system; using the system «Warm spring». It is proposed implementation method of heating water in water troughs by means of the induction heater. Described in detail the proposed system provide the animals with warm water, its structure and principle of operation, advantages over other methods of maintaining optimum temperature. The basic directions of modernization of system of watering, such as: 1) applying insulating materials to reduce heat loss; 2) the use of electric heating elements with high class electrical safety to avoid the possibility of animals receiving electric shock; 3) the introduction of advanced methods of heating water in the drinkers; 4) the search and realization of new methods of maintaining the desired temperature of the water in the drinkers with less energy sources of thermal energy.

Текст научной работы на тему «Основные направления модернизации систем поения на фермах КРС»

УДК 628.1; 636.2

ОСНОВНЫЕ НАПРАВЛЕНИЯ МОДЕРНИЗАЦИИ СИСТЕМ ПОЕНИЯ НА ФЕРМАХ КРС

Оболенский Николай Васильевич, доктор технических наук, профессор

Шевелев Александр Владимирович, аспирант

Нижегородский государственный инженерно-экономический университет, Княгинино (Россия)

Аннотация. Описано общее состояние систем поения на фермах КРС. Обоснована важность правильного и своевременного поения животных водой, отвечающей зоотехническим требованиям. Произведена классификация применяемых поилок как отечественного, так и импортного производства, рассмотрены наиболее распространенные марки поилок с подробным описанием их устройства и принципа действия. Изучен ряд иностранных производителей оборудования для ферм КРС: ZIMMERMANN Stalltechnik (Германия), «LA BUVETTE» (Франция), «KERBL» (Германия), «Farma» (Дания), «SL» (Польша), «De Boer» (Голландия), Suevia (Германия), Arntjen (Германия), «De Laval» (Швеция), создающих конкуренцию отечественным товаропроизводителям. Рассматривались основные, применяемые на фермах КРС, системы поения, выявлены их преимущества и проблемные места, предложены способы устранения их недостатков. Изучены основные способы подогрева воды в поилках: размещением водонагревателей внутри поилки (локальный нагрев): централизованным нагревом воды с последующей её циркуляцией по всей системе поения; применением системы «Тёплый родник». Предложен к реализации способ подогрева воды в поилках при помощи индукционного нагревателя. Подробно описана предлагаемая система обеспечения животных теплой водой, ее устройство и принцип действия, отмечены преимущества перед другими способами поддержания оптимальной температуры. Предложены основные направления модернизации систем поения, как-то: 1) применение теплоизоляционных материалов с целью сокращения потерь теплоты; 2) применение электронагревательных элементов с высоким классом электробезопасности в целях избежания возможности получения животными электрического удара; 3) внедрение передовых методов подогрева воды в поилках; 4) поиск и реализация новых методов поддержания необходимого температурного режима воды в поилках с менее энергозатратными источниками тепловой энергии.

Ключевые слова: водоснабжение, животное, клапан, конструкция, коровник, модернизация, поддержание температуры, подогрев, поилка, система поения.

THE MAIN DIRECTIONS OF THE MODERNIZATION OF THE WATER SYSTEM ON THE CATTLE FARM

Obolenskiy Nikolay Vasilievich, the doctor of technical sciences, the professor

Nizhniy Novgorod state engineering-economic university, Knyaginino (Russia) Shevelev Aleksandr Vladimirovich, the post-graduate student

Nizhniy Novgorod state engineering-economic university, Knyaginino (Russia)

Annotation. It is described the General condition of the drinking systems on farms cattle. It is substantiated the importance of proper and timely watering animals with water to meet the zoo technical requirements. The classification of drinkers used both domestic and imported, is considered the most common brand of drinkers with a detailed description of their device and principle of action. Studied a number of foreign manufacturers of equipment for cattle farms: ZIMMERMANN Stalltechnik (Germany), «LA BUVETTE» (France), «KERBL» (Germany), «Far-ma»(Denmark), «SL»(Poland), «DeBoer» (Holland), Suevia (Germany), Arntjen (Germany), «De Laval» (Sweden), creating competition with domestic producers. Addressed the main used on farms cattle watering systems, identified their strengths and problem areas, suggested ways of addressing their shortcomings. Studied the main ways of heating water in the drinking bowls: the placement of the heaters inside the troughs (local heating): centralized water heating with the subsequent circulation throughout the drinking system; using the system «Warm spring». It is proposed implementation method of heating water in water troughs by means of the induction heater. Described in detail the proposed system provide the animals with warm water, its structure and principle of operation, advantages over other methods of maintaining optimum temperature. The basic directions of modernization of system of watering, such as: 1) applying insulating materials to reduce heat loss; 2) the use of electric heating elements with high class electrical safety to avoid the possibility of animals receiving electric shock; 3) the introduction of advanced methods of heating

water in the drinkers; 4) the search and realization of new methods of maintaining the desired temperature of the water in the drinkers with less energy sources of thermal energy.

Keywords: applying water, animal, valve, construction, barn, modernization, maintaining temperature, heating, drinking, water system.

Введение

В животноводстве, как и во многих других отраслях сельского хозяйства, огромную роль играет водоснабжение. Вода для животных жизненно необходима, т. к. именно с ее участием в их организме протекают все физиологические процессы. Особую потребность в воде испытывают молочные коровы, поскольку для производства одного литра молока требуется в пять раз больше жидкости. Из этого расчета можно сделать вывод, что на молочных фермах на одну корову в среднем необходимо не менее 80 литров воды в день, в некоторых хозяйствах в летний период эта цифра может достигать 130 литров. Именно поэтому правильное поение является таким же обязательным условием, как и кормление, т. к. несвоевременное и недостаточное поение, а также неправильный подход к этому процессу может отрицательно сказаться на удое .

Оптимальной температурой воды для поения КРС считается +8...+12 °С. Более теплая вода не оказывает на животного освежающего воздействия, а при употреблении воды с температурой свыше 20 °С их организм становится восприимчивие к простудным заболеваниям. Поение холодной водой вызывает у животного переохлаждение организма, появление простудных заболеваний, нарушение пищеварения, а в редких случаях приводит к абортам у беременных маток. Установлено, что перебои в поставке воды животным, а также несоблюдение зоотехнических требований, предъявляемых к воде, способно снизить производительность коров на 10-15 % и увеличить расход кормов на 3-5 % .

В связи с вышесказанным наиважнейшей задачей становится усовершенствование процессов подготовки воды и модернизация имеющихся систем водообеспечения животных. Решением этой проблемы занимались Шупик М. В., Хазанов Е. Е., Мамедов Э. С., Поцелуев А. А. и другие исследователи .

Материалы и методы

Одним из перспективных направлений модернизации систем водоснабжения может стать изготовление автопоилок с подогревом, что обеспечит постоянную оптимальную температуру воды в холодные периоды .

Все используемые на фермах поилки подразделяются на индивидуальные (рис. 1, а) и групповые (рис. 1, б и в). Индивидуальные используются на фермах КРС с привязным содержанием животных в отдельных станках, групповые - при беспривязном содержании. При этом групповые автопоилки могут быть стационарными (применяются на фермах) и передвижными (на пастбищах и в лаге-р ях, удаленных от источника водоснабжения). По конструкции автопоилки бывают клапанные, вакуумные и бесклапанные, работающие по принципу сообщающихся сосудов. В свою очередь, клапанные подразделяются на педальные и поплавковые. Все применяемые групповые автопоилки также можно разделить на 2 типа: обладающие индивидуальным встроенным регулятором уровня и имеющие один регулятор уровня на несколько поилок, к которым можно отнести «уровневые» поилки, используемые для беспривязного содержания КРС .

Рисунок 1 - а) индивидуальная поилка: 1 - корпус; 2 - клапан; 3 - нажимная педаль; 4 - поильная чаша; 5 - резиновый амортизатор; б) групповая передвижная автопоилка: 6 - цистерна; 7 - вакуумрегулятор;

8 - поильные корыта; в) групповая стационарная поилка

В настоящее время поддержание необходимого оптимального значения температуры в системах автопоения осуществляется в основном нагревательными элементами, расположенными в резервуаре, или созданием постоянного протока в питьевом

корыте. В первом случае могут использоваться автоматические водонагревательные термосы типа ВЭТ с объемом резервуара от 200 до 800 литров в зависимости от поголовья КРС. При этом присутствует существенный недостаток - нагретая вода,

поступившая в поилку, со временем остывает, а при сильных заморозках может образоваться обледенение с дальнейшим выходом оборудования из строя. Во втором случае необходима постоянная регулировка подачи воды, а непрерывная ее циркуляция влечет за собой значительный перерасход электроэнергии. В данном случае могут использоваться электронагреватели проточного типа ЭВП-2 или ЭВАН-100, в которых температура воды поддерживается автоматически.

Обсуждение

Для поения крупного рогатого скота используют автопоилки: индивидуальные ПА-1, ПА-1М, ПАВ-9М, АП-1А и групповые АГК-12, АГК-12А, АГК-12Б. Индивидуальная поилка (рис 1, а) состоит из чаши, клапана и нажимной педали, предназначенной для открывания и закрывания клапана. Групповые автопоилки (рис. 1, б и в) представляют собой металлические, реже пластмассовые, корыта с подведенными к ним трубами водоснабжения. Устанавливают и те и другие автопоилки на высоте не более 0,6 м от пола. Такие же автопоилки могут применяться на лошадиных фермах .

По причине развития молочной промышленности, а также строительства новых ферм в рамках национальных проектов возникла резкая необходимость в качественном оборудовании для содержания КРС и внедрении прогрессивных технологий производства молока. Существует целый ряд иностранных производителей оборудования для молочных ферм: ZIMMERMANN Stalltechnik (Германия), «LA BUVETTE» «Франция», «KERBL» (Германия), «Farma» (Дания), «SL» (Польша), «De Boer» (Голландия), Suevia (Германия), Amtjen (Германия), «De

Laval» (Швеция), создающих конкуренцию отечественным товаропроизводителям. Именно поэтому на сегодняшний день актуальной задачей становится разработка и внедрение в производство в России современных автоматических энергосберегающих систем поения, отвечающих зоотехническим требованиям.

Главным зоотехническим требованием является обеспечение животных водой с оптимальной для них температурой, осуществление которого весьма сложная задача в зимнее время при критических отрицательных температурах, особенно в открытых холодных помещениях. Опыт холодных зим 2002, 2006, 2011 и 2012 гг. показал острую необходимость в создании надёжных высокоэффективных систем автоматического подогрева воды для организации процесса поения животных при длительных заморозках.

Одним из способов осуществления подогрева воды в поилках является использование теплоты земли. Такой способ подогрева воды реализован в системе «Тёплый родник» в автопоилках фирмы «Suevia» в моделях 630, 640, 850 и 860 .

Принцип действия системы «Тёплый родник» заключается в следующем (рис. 2): вода к поилке 1 поступает через подводящую трубу, проходящую через заполненную водой шахту 4 (полая бетонная труба), соединённую с водопроводом 5, проложенным в грунте на глубине ниже промерзания (не менее 1,8 метра). Таким образом, вода, поступающая в поилку, нагревается за счет конвективного теплообмена, происходящего между верхними и нижними слоями грунта.

Рисунок 2 - Поилка с системой «Тёплый родник»: 1 - поилка; 2 - бетонный пол; 3 - грунт, земля;

4 - шахта (бетонная труба); 5 - водопровод

Сама поилка оснащена теплоизоляционным материалом, предохраняющим от дополнительных теплопотерь. Как правило, поилки с таким способом подогрева применяются в неотапливаемых коровниках в регионах с «мягкими» зимами. Вода в таких поилках, как заявляет фирма-производитель, не опускается ниже +6 °С, а в летний период не поднимается выше +15 °С. Существенный недостаток поилок с системой «Тёплый родник» - большие капиталовложения на внедрение этой системы в уже построенные фермы КРС. Главное преимущество -отсутствие затрат на электроэнергию, поскольку электронагрев полностью исключён.

Наиболее распространённый и перспективный способ подогрева воды в автопоилках - применение электронагрева путём размещения водонагревателей внутри поилки (локальный нагрев), либо централизованного нагрева воды с обеспечением по-

следующей её циркуляцией по всей системе поения .

Способ локального нагрева реализован в стационарных групповых автопоилках типа АГК-4, АГК-4А, АГК-4Б (рис. 3). Используют их на фермах КРС с беспривязным содержанием. Устройство таких автопоилок следующее: в теплоизоляционный корпус вмонтирована поильная чаша на 4 места, в которой установлен клапанно-поплавковый механизм, служащий для регулировки уровня воды. Обогрев осуществляется тэнами, вмонтированными в подчашечном пространстве. Автоматическое поддержание температуры в диапазоне 5.14 °С осуществляется посредством терморегулятора, установленного в поильной чаше. Работает такая автопоилка от переменного тока с и 220 В. Рассчитана она на 100 голов КРС .

Рисунок 3 - Автопоилка АГК-4А: 1 - корпус; 2 - поильная чаша; 3 - крышка; 4 - клапан; 5 - поплавковый механизм; 6 - разделитель; 7 - терморегулятор; 8 - блок заземления; 9 - электронагревательный элемент (ТЭН); 10 - теплоизоляция; 11 - водоподводящая труба;

12 - утеплительная труба

Автопоилки с локальным обогревом обладают двумя существенными недостатками: 1) повышенная электроопасность за счет возможного возникновения повышенных токов утечки (снижения электрического сопротивления изоляции тэнов) и, как следствие, получение животным электроудара; 2) возможность промерзания трубы подводящего водопровода при низких температурах. Повышение токов утечки устраняется применением высококачественных тэнов с высоким классом электробезопасности. Для предотвращения промерзания подводящих труб используют термошнуры невысокой (20/24 Ватт) мощности .

Более распространёнными для климата России считаются системы поения с циркуляцией воды. При этом возможны три варианта исполнения систем такого рода:

1) нагретая вода циркулирует по системе и поступает в поилки чашечного типа (8иеу1а 303/300);

2) нагретая вода циркулирует при помощи насоса по теплообменникам, расположенным в емкостных поилках, при этом в саму поилку вода поступает при изменении уровня, т. е. при потреблении животными. Таким способом устроена система поения овец КВО-8А/5, КВО-3/12, КВО-8А/24 и КВ0-8А/30. Недостаток - большая энергоёмкость;

3) подогретый теплоноситель циркулирует по трубопроводам системы и проходит теплообменник не попадая в саму поилку. В этом варианте системы к поилке подведены три трубопровода: прямой, обратный и подпитывающий.

В третьем варианте в роли теплоносителя может применяться как вода, так и незамерзающая жидкость, при этом подогрев может осуществляться от системы отопления.

Главный недостаток систем с циркуляцией воды, в сравнении с локальным нагревом, - большие теплопотери. Минимизировать эти потери можно применением теплоизоляционных материа-

лов, что успешно реализуется в автопоилках иностранного производства. Для снижения теплопотерь в трубопроводах можно использовать трубчатые теплозащитные покрытия или термошнуры небольшой мощности .

В последнее время на фермах КРС начали использовать наиболее оптимальный способ подогрева воды - комбинированный (рис. 4). При этом способе подогретая в водонагревателе 8 вода посредством циркуляционного насоса 7 подается в поильную чашу 1, в которой остаётся до употребления, автоматически подогреваясь тэном 6, вмонтированным под чашей. Для поддержания постоянного уровня воды в поильной чаше установлен поплавковый клапан 3, срабатывающий при употреблении воды животными.

их преимущества и недостатки, приходим к выводу, что системы автопоения животных нуждаются в модернизации с целью оптимизации энергозатрат. Одним из направлений модернизации может стать применение ранее не используемых методов нагрева жидкостей.

Одним из вариантов модернизации может стать автопоилка с обогревателем индукционного действия (рис. 5). В такой поилке подогрев воды осуществляется размещением подводящей трубы в магнитном поле катушки.

Рисунок 4 - Групповая автопоилка с подогревом: 1 - поильная чаша; 2 - рама; 3 - клапан поплавковый; 4 - муфта; 5 - стопор; 6 - ТЭН; 7 - циркуляционный насос; 8 - водонагреватель

Результаты

Рассмотрев используемые в настоящее время на фермах КРС модификации автопоилок, изучив существующие методы подогрева воды в поилках,

Рисунок 5 - Принцип действия индукционного нагрева

Принцип действия индукционного нагревателя (рис. 5): электромагнитная катушка, подключенная в сеть, создаёт переменное магнитное поле. При этом во вторичной обмотке, которой в нашем случае являтся подводящая труба, создаются наводящие токи (токи Фуко), разогревающие металл. Поступающая холодная вода, проходя по такой трубе, разогревается и разогревает воду. Преимущество такого подогрева перед тэновым - более высокая электробезопасность и эффективность (КПД до 0,98).

Рисунок 6 - Система поения с индукционным подогревателем: 1 - входная труба; 2 - клапанно-поплавковый механизм; 3 - термодатчик; 4 - шкаф управления; 5 - обратная магистраль водопровода; 6 - циркуляционный насос; 7 - индукционный подогреватель

Принцип действия системы с индукционным подогревателем состоит в следующем: вода заполняет систему через входной патрубок 1. В поильных

корытах установлены клапанно-поплавковый механизм 2 и термодатчик 3. Циркуляция воды в системе обеспечивается насосом 6, установленным на об-

ратной магистрали водопровода. При понижении температуры воды срабатывает термодатчик 3, подающий сигнал в шкаф управления 4, в котором распложены устройства защиты и управления индукционным подогревателем 7.

Для оптимизации расходов электроэнергии необходимо учесть, что если через входную трубу подается уже нагретая вода (от бойлера или водо-нагревательного термоса ВЭТ), то для поддержания её заданной температуры будет достаточно использовать маломощные индукционные нагреватели на 3.5 кВт, работающие от сети 220 В: ВИН-3/5; 8ЛУ-2,5/3; ПИН-3; ЭНАТС-4,7. Если же вода подается холодная, то для нагрева её до оптимальной температуры понадобятся водонагреватели мощностью 6.7 кВт.

Заключение

На фермах КРС для поения применяется отечественное оборудование, нуждающееся в модернизации с целью снижения энергопотребления и повышения электробезопасности. Основным направлением модернизации систем поения является поиск и реализация новых методов поддержания необходимого температурного режима воды в поилках с менее энергозатратными источниками тепловой энергии.

СПИСОК ЛИТЕРАТУРЫ

1. Кавтарашвили А., Шоль В. Качество воды - составляющая успеха // Животноводство России. 2014. № 8. С. 29-31.

2. Вторый В. Ф., Вторый С. В., Зайцев И. С. Мониторинг водопотребления - путь к снижению экологического ущерба при производстве молока. ГНУ Северо-Западный научно-исследовательский институт механизации и электрификации сельского хозяйства Россельхозакадемии. Санкт-Петербург: 2011. С. 104-109.

3. Сёмин А. Комфортная среда обитания коровы - залог хорошего здоровья и продуктивного долголетия // Молочная промышленность. 2013. № 7. С. 20.

4. Хазанов Е. Е., Гордеев В. В., Хазанов В. Е. Модернизация молочных ферм. СПб. : ГНУ СЗНИИМЭСХ Россельхозакадемии, 2008. 380 с.

5. Мамедов Э. С. Разработка методики оптимизации микроклимата в животноводческих и птицеводческих помещениях // Сборник известий. НАНА Гянджинский региональный научный центр. Гянджа: 2012. № 493. С. 65-69.

6. Мамедов Э. С. Тепловлажностный баланс животноводческих помещений // Материалы общереспубликанской конференции. Гянджа: АГАУ, 2013. С.138-140.

7. Хазанов Е. Е., Ревякин Е. Л., Хазанов В. Е., Гордеев В. В. Рекомендации по модернизации и

техническому перевооружению молочных ферм. Москва: ФГНУ«Росинформагротех», 2007. 128 с.

8. Шупик М. В. Скрылев Н. И. Кормление крупного рогатого скота: учебное пособие. Горки: Белорусская государственная сельскохозяйственная академия, 2006. 88 с.

9. Поцелуев А. А. Ресурсосберегающие системы водообеспечения технологических процессов по обслуживанию крупного рогатого скота: диссертация на соискание ученой степени доктора технических наук. Зерноград, 2011. 441 с.

10. Суюнчалиев Р. С., Сафронова М. П. Система поения животных подогретой водой. Патент на изобретение RUS 2242120 16.06.2003.

11. Разведение с основами частной зоотехники: учебник для вузов / Под общ. ред. проф. Н. М. Костомахина. Санкт-Петербург: Лань, 2006. 488 с.

12. Таран Е. А., Минина Е. С. Классификация групповых автопоилок с термосифонной циркуляцией воды // Вестник аграрной науки Дона. 2013. № 4 (24) С. 14-17.

13. Таран Е. А., Орищенко И. В. Параметры, влияющие на процесс нагрева воды в групповой автопоилке // Вестник аграрной науки Дона. 2013. № 4 (24) С. 18-21.

14. Андреева Е. В. Инженерно-техническое обеспечение АПК // Реферативный журнал. 2013. № 2. С. 563.

15. Тихомиров А. В. Энергоэффективные технические средства и оборудование в системах энергообеспечения объектов животноводства // Всероссийский научно-исследовательский институт механизации животноводства РАСХН, 2011. С. 43-49.

16. Гордиевских М. Л. Коровник с выдвижной доильной установкой // Достижения науки и техники АПК. 2006. № 3. С. 42-43.

17. Скоркин В. К. Современные требования к управлению технологическими процессами на молочных фермах с целью повышения качества продукции // Вестник ВНИИМЖ. 2013. № 3. С. 4-13.

18. Русское поле. Техника по производителю [Электронный ресурс]. Режим доступа: http://www.rusfield.ru/technics/firms-zim-krs.shtml

19. Цой Ю. А., Суюнчалиев Р. С., Мансуров А. А. Направления совершенствования энергосберегающих систем поения крупного рогатого скота при беспривязном содержании // Труды международной научно-технической конференции «Энергообеспечение и энергосбережение в сельском хозяйстве». 2006. Т. 3. С. 132-136.

20. Бибарсов В. Ю., Фомин М. Б., Рахим-жанова И. А., Старожуков A. M., Нигматов Л. Г. Разработка и исследование системы бесперебойного автоматического группового поения животных с использованием ВЭУ (автопоилка с подогревом во-

ды от ветроагрегата) // Инновац. электротехнологии и электрооборудование - предприятиям АПК. Ижев. гос. с.-х. акад. Ижевск, 2012. С. 98-103.

21. Коршунов Б. П., Марьяхин Ф., Учеват-кин А. И., Коршунов А. Б., Иванов В. В. Энергосберегающая комбинированная теплохолодильная система для молочных ферм // Инновации в сельском хозяйстве. 2016. № 4 (19). С. 106-110.

22. Коняев Н. В., Назаренко Ю. В. Модернизированная система поения животных // Электрика. 2015. № 9. С. 37-40.

23. Осокин В. Л., Макарова Ю. М. Теоретические предпосылки создания нового устройства водоподготовки в помещениях содержания КРС // Вестник НГИЭИ. 2015. № 4 (47) С. 72-76.

1. Kavtarashvili A., SHol" V. Kachestvo vodi -sostavlyayuschaya uspeha (The water quality component of success), Zgivotnovodstvo Rossii. 2014. No. 8. pp.29-31.

2. Vtoriy V. F., Vtoriy S. V., Zaytsev I. S. Monitoring vodopotrebleniya - put" k snizgeniyu ekologicheskogo uscherba pri proizvodstve moloka (Monitoring of water consumption - reduce environmental damage in the production of milk), GNU Severo-Zapadniy nauchno-issledovatel "skiy institut me-hanizatsii i elektrifikatsii sel"skogo hozyaystva Ros-sel"hozakademii. Sankt-Peterburg: 2011. pp. 104-109.

3. Syomin A. Komfortnaya sreda obitaniya ko-rovi - zalog horoshego zdorov"ya i produktivnogo dol-goletiya (Comfortable living environment cows - the key to good health and productive longevity), Mo-lochnayapromishlennost". 2013. No. 7. pp. 20.

4. Hazanov E. E., Gordeev V. V., Hazanov V. E. Modernizatsiya molochnih ferm (Modernization of dairy farms). SPb. : GNU SZNIIMESH Ros-sel"hozakademii, 2008. 380 p.

5. Mamedov E. S. Razrabotka metodiki optimi-zatsii mikroklimata v zgivotnovodcheskih i ptitsevodcheskih pomescheniyah (Development of methods of optimization of microclimate in livestock and poultry premises), Sbornik izvestiy. NANA Gyandzginskiy regional"niy nauchniy tsentr. Gyandzga: 2012. No. 493. pp. 65-69.

6. Mamedov E. S. Teplovlazgnostniy balans zgivotnovodcheskih pomescheniy (Heat and humidity balance of livestock buildings), Materiali obscherespu-blikanskoy konferentsii. Gyandzga: AGAU, 2013. pp. 138-140.

7. Hazanov E. E., Revyakin E. L., Hazanov V. E., Gordeev V. V. Rekomendatsii po moderni-zatsii i tehnicheskomu perevooruzgeniyu molochnih ferm (Recommendations on modernization and technical re-equipment of dairy farms). Moskva: FGNU«Rosinformagroteh», 2007. 128 p.

8. SHupik M. V. Skrilev N. I. Kormlenie krupnogo rogatogo skota (Feeding cattle) : uchebnoe posobie. Gorki: Belorusskaya gosudarstvennaya sel"skohozyaystvennaya akademiya, 2006. 88 p.

9. Potseluev A. A. Resursosberegayuschie sis-temi vodoobespecheniya tehnologicheskih protsessov po obsluzgivaniyu krupnogo rogatogo skota (Resource-saving water systems of technological processes for maintenance of cattle) : dissertatsiya na soiskanie uchenoy stepeni doktora tehnicheskih nauk. Zerno-grad, 2011. 441 p.

10. Suyunchaliev R. S., Safronova M. P. Sistema poeniya zgivotnih podogretoy vodoy (The watering system of the animal heated water). Patent na izobreten-ie RUS 2242120 16.06.2003.

11. Razvedenie s osnovami chastnoy zootehniki (Breeding with the basics of private livestock) : ucheb-nik dlya vuzov / Pod obsch. red. prof. N. M. Kostoma-hina. Sankt-Peterburg: Lan", 2006. 488 p.

12. Taran E. A., Minina E. S. Klassifikatsiya gruppovih avtopoilok s termosifonnoy tsirkulyatsiey vodi (Classification autopilot group with thermosyphon circulation of water), Vestnik agrarnoy nauki Dona. 2013. No. 4 (24) pp. 14-17.

13. Taran E. A., Orischenko I. V. Parametri, vliyayuschie na protsess nagreva vodi v gruppovoy avtopoilke (The parameters that affect the process of heating the water in a group avtopoilki), Vestnik agrar-noy nauki Dona. 2013. No. 4 (24) pp. 18-21.

14. Andreeva E. V. Inzgenerno-tehnicheskoe obespechenie APK (Engineering APK), Referativniy zgurnal. 2013. No. 2. pp. 563.

15. Tihomirov A. V. Energoeffektivnie tehnich-eskie sredstva i oborudovanie v sistemah energoo-bespecheniya ob""ektov zgivotnovodstva (Energy efficient hardware and equipment in power supply systems of objects of animal husbandry), Vserossiyskiy nauch-no-issledovatel"skiy institut mehanizatsii zgivotnovodstva RASHN. 2011. pp. 43-49,

16. Gordievskih M. L. Korovnik s vidvizgnoy doil"noy ustanovkoy (Barn with retractable milking installation), Dostizgeniya nauki i tehniki APK. 2006. No. 3. pp. 42-43.

17. Skorkin V. K. Sovremennie trebovaniya k upravleniyu tehnologicheskimi protsessami na mo-lochnih fermah s tsel"yu povisheniya kachestva produk-tsii (Modern requirements to the management of technological processes on dairy farms to improve product quality), Vestnik VNIIMZG. 2013. No. 3. pp.4-13.

1 8. Russkoe pole. Tehnika po proizvoditelyu . Rezgim dostupa: http://www.rusfield.ru/technics/firms-zim-krs.shtml

19. TSoy YU. A., Suyunchaliev R. S., Mansurov A. A. Napravleniya sovershenstvovaniya energosberegayuschih sistem poeniya krupnogo rogato-

go skota pri besprivyaznom soderzganii (Directions of perfection of energy-saving systems for watering cattle in loose housing), Trudi mezgdunarodnoy nauchno-tehnicheskoy konferentsii «Energoobespechenie i ener-gosberezgenie v sel"skom hozyaystve». 2006. T. 3. pp.132-136.

20. Bibarsov V. YU., Fomin M. B., Rahim-zganova I. A., Starozgukov A. M., Nigmatov L. G. Raz-rabotka i issledovanie sistemi bespereboynogo avto-maticheskogo gruppovogo poeniya zgivotnih s ispol"zovaniem VEU (avtopoilka s podogrevom vodi ot vetroagregata) (Development and research of the uninterrupted group automatic watering animals using wind turbines (autodrinking heated water from turbine)), In-novats. elektrotehnologii i elektrooborudovanie -predpriyatiyam APK. Izgev. gos. s.-h. akad. Izgevsk, 2012.pp. 98-103.

21. Korshunov B. P., Mar"yahin F., Uchevatkin A. I., Korshunov A. B., Ivanov V. V. Energosberegay-uschaya kombinirovannaya teploholodil"naya sistema dlya molochnih ferm (Energy-saving combined heat-refrigeration system for dairy farms), Innovatsii v sel"skom hozyaystve. 2016. No. 4 (19). pp. 106-110.

22. Konyaev N. V., Nazarenko YU. V. Modern-izirovannaya sistema poeniya zgivotnih (Upgraded the watering system of animals), Elektrika. 2015. No. 9. pp. 37-40.

23. Osokin V. L., Makarova YU. M. Teoretich-eskie predposilki sozdaniya novogo ustroystva vodopodgotovki v pomescheniyah soderzganiya KRS (Theoretical background the creation of a new water treatment device on the premises of the cattle), Vestnik NGIEI. 2015. № 4 (47) pp. 72-76.

В последние несколько лет в нашей стране наблюдается резкий рост строительства и реконструкции животноводческих и птицеводческих комплексов. Практически все предприятия, построенные после 2000 года, стараются применять только новейшие технологии и современное оборудование для содержания животных. Но с переработкой навоза дело обстоит иначе.

Специалисты утверждают, что проблема отсутствия современных очистных сооружений на фермах стоит очень остро. Профессор кафедры электрификации и автоматизации МСХА им. Тимирязева Георгий Дектерев даже называет ее одной из вечных проблем отрасли. За последние несколько лет ситуация с внедрением современных технологий не сдвинулась с места, сетует он. На рынке появились новые материалы (например, лагуны из пленки с полной гидроизоляцией вместо ненадежных бетонных сооружений), но из-за дороговизны переоборудования предприятия их практически не используют.

Подобным образом оценивает ситуацию и директор института «Белагротех» (Белгород) Владимир Скороходов: «В настоящее время на территории России практически не существует ферм, на которых для переработки отходов используются очистные сооружения. В большинстве случаев применяются так называемые лагуны — котлованы, куда сбрасывается сырье. После заполнения лагуны ее содержимое выносится на поля без какой-либо переработки». Для сравнения эксперт приводит опыт Европы, где уже около 10 лет действует закон, запрещающий выбрасывать на поля непереработанные органические отходы. Также на западе из-за опасности проникновения сырья в грунт запрещено заглубленное хранение отходов, которое в России применяется повсеместно.

Инженер проектов компании «Биокомплекс» (Москва, переработка и утилизация отходов) Сергей Перегудов считает, что основной причиной низкой оснащенности российских сельскохозяйственных и животноводческих предприятий современным оборудованием для переработки и утилизации отходов является их относительная «юность» и затяжной кризис, который сильно сократил деловую активность сельского хозяйства России. Скороходов же связывает возникновение такой сложной ситуации с небрежностью аграриев по отношению к земле и устаревшим законодательством.

В настоящее время в России действуют Нормы Технологического Проектирования (НТП 17-99). По словам экспертов, в большинстве случаев аграрии их соблюдают, однако сами нормы уже давно устарели. Существующие правила не предполагают использования новых технологий, поэтому при проектировании приходится пользоваться европейскими и американскими стандартами. Профессор Дектерев замечает, что современных очистных сооружений нет даже в Московской области, где за соблюдением экологических норм следят гораздо более внимательно.

Гидросмывом или скрепером?

Первое звено в цепи очистных сооружений — системы, отвечающие за удаление навоза из животноводческих помещений. По словам Перегудова, они делятся на два основных вида. Первый — механические системы. Как правило, они применяются на предприятиях по разведению крупного рогатого скота при беспривязном, стойловом и стойлово-пастбищном содержании животных, в родильных отделениях, телятниках, в домиках для телят и на открытых откормочных площадках. Также механические системы распространены на небольших свиноводческих предприятиях мощностью до 24 тыс. голов в год и свинокомплексах, использующих технологию холодного содержания животных в легких ангарах.

Механический способ удаления и транспортирования навоза осуществляется с помощью скребковых транспортеров. Во дворах с привязным содержанием, как правило, используются устаревшие устройства типа ТСН-160 российского производства, а в новых и реконструированных комплексах применяются современные скреперные системы таких производителей, как «Фармтек», «Трансфер-Агро», «Дейри-Тек», DeLaval , WestfaliaSurge и др. К механическим способам удаления навоза еще относится использование бульдозеров разных типов.

Также Перегудов выделяет гидравлические системы навозоудаления. Они, в свою очередь, делятся на два основных типа: самосплавные и гидросмывные. Самосплавные (самотечные) системы бывают периодического или непрерывного действия. Система периодического действия (вакуумная система) представляет собой цепь сообщающихся ванн с пробками. Она применяется при строительстве и реконструкции современных свинокомплексов при бесподстилочном содержании животных. Самосплавную систему навозоудаления непрерывного действия, как правило, применяют при бесподстилочном содержании животных или при использовании неглубокой подстилки в помещениях для КРС. По этой технологии смыв трубы или канала осуществляется жидкой фракцией навоза.

Гидросмывный способ навозо-удаления был особенно распространен в 1980-е годы при строительстве свиноводческих предприятий на 54 и более тысяч свиней в год. Сейчас технология считается устаревшей: затраты воды при этом методе увеличиваются в десять раз по сравнению с самосплавными системами, что крайне не экономично. Поэтому гидросмыв запрещено использовать при новом строительстве, за исключением особых случаев, согласованных с органами государственного экологического контроля, ветеринарного и санитарного надзора. Однако коммерческий директор Bauer Technics Group Андрей Ященко утверждает, что и по сей день на свиноводческих фермах чаще всего применяют систему гидросмыва.

По словам Перегудова, комплексы КРС, построенные по технологии холодного содержания, тоже оснащают механическими или гидравлическими системами навозоудаления. Отличительная особенность у таких помещений одна: при их проектировании делается поправка на глубину канала, который должен пролегать ниже уровня промерзания грунта, поясняет специалист. Ященко добавляет, что в зимние периоды, когда температура опускается ниже -15оC, уборку навоза осуществляют мини-тракторами, при этом на период сильных морозов временно убирают скреперы.

Именно так с органическими отходами справляются в СПК «Подовинное» (Челябинская область, КРС). В хозяйстве используется технология холодного содержания животных. Когда температура в коровниках опускается до -6оC, применение скреперных установок становится невозможным, и удаление навоза производится раз в день тракторной лопатой (в хозяйстве в основном используются трактора ТЗ-80 белорусского производства).

В качестве подстилки для скота применяется солома, которая удаляется вместе с навозом (тем самым обеспечивается более эффективное гниение сырья). Далее следует погрузка на телеги и выгрузка на специальные бетонированные площадки, где навоз оставляют на год и только после этого вносят на поля. По словам директора предприятия Сергея Мельникова, на Урале распространены нетрадиционные технологии удаления навоза. Ведь в сорокоградусные морозы применение «классических» методов возможно только в отапливаемых помещениях.

Переработка сырья

После удаления стоков с территории животноводческих помещений наступает процесс их переработки и утилизации. Этот процесс полностью контролируется нормами технического проектирования. Перегудов поясняет, что основными требованиями НТП 17-99 при проектировании, строительстве и реконструкции очистных сооружений для промышленных животноводческих комплексов являются: разделение стоков навоза на фракции; карантинирование всех видов навоза в течение 7 дней; компостирование твердой фракции и подстилочного навоза активным (7-8 дней) или пассивным (2 месяца в теплое время года и до 3 месяцев в холодное) способом для обеззараживания и дегельминтизации; обеззараживание жидкой фракции навоза в секционных прудах-накопителях от 4 до 8 месяцев в зависимости от вида животных; использование всех видов навоза и его фракций в качестве органических удобрений на полях.

Так как затраты на эксплуатацию систем по переработке и вносу навоза на поля напрямую влияют на рентабельность и себестоимость продукции животноводства, на предприятии необходимо использовать энергосберегающие и низкозатратные технологии утилизации и переработки навоза в органические удобрения, советует Перегудов.

Александр Закревский, главный инженер НПО «Агротехкомплект» (Санкт-Петербург; проектирование и строительство животноводческих комплексов), среди современных технологий переработки сырья ориентируется на европейскую технологию, представленную в концепции компании Wopereis (Нидерланды). «Эта технология широко применяется на молочных фермах в Европе, — рассказывает он. — Дойные коровы, находящиеся на силосном кормлении, производят жидкий навоз, который достаточно легко поддается перекачиванию центробежными насосами. То, что остается на полу, удаляется скребками (скреперами) и сбрасывается в поперечный навозный канал глубиной 1,7 метра. Когда он наполняется, навоз перемещают в навозохранилище».

По словам Закревского, удаление навоза из навозосборного канала происходит следующим образом.

В канале устанавливают электрический погружной миксер и центробежный насос. Миксер обеспечивает качественное перемешивание навоза в однородную массу, а центробежный насос, который опускают на дно канала, передает сырье в герметичный пластиковый трубопровод, устойчивый к промерзанию и протеканиям. Под землей этот трубопровод входит в навозохранилище.

Но перед внесением удобрения на поля его нужно повторно перемешать, напоминает Закревский. Для этого существуют стационарные миксеры лопастного типа, работающие от привода вала трактора. В лагуне объемом 6 тыс. куб. м (максимальный объем, который возможно создать из одного куска пленки) перемешивание занимает 12 часов. После этого для распределения навоза по полю используют самоотсасывающие вакуумные бочки объемом около 11-15 куб. м. Позади такой бочки установлен инжектор (культиватор), помогающий внести навоз подпочвенно, сохранив содержащийся там азот. Инжекторы обладают шириной захвата около 6 м и равномерно распределяют навоз по полю. Вакуумные насосы, которые установлены на бочке, имеют два режима вращения: они способны как всасывать, так и выталкивать навоз из бочки. Насосы создают внутри бочки избыточное давление, и навоз быстрее вытекает на поле. Так экономится время на подпочвенном внесении, вся бочка опорожняется за 3-4 минуты. Весной и осенью, когда проходят такие работы, навозохранилища полностью опустошаются и заполняются вновь.

Рассчитать примерную стоимость такого комплекса оборудования непросто, так как все проекты уникальны, говорит Закревский, но добавляет, что одна лагуна в комплекте с миксером, насосом и трубопроводом может стоить около €100 тыс. Также необходимо понимать, что для установки такого комплекта оборудования нужна полная реконструкция зданий и изменение концепции самой фермы, напоминает специалист. Основным достоинством этой технологии, по его словам, является то, что при ее использовании отпадает необходимость приобретения азотных удобрений. Ценнейшее удобрение — азот — вносится в почву вместе с жидким навозом. Закревский утверждает, что благодаря отказу от покупки азотных удобрений в хозяйстве на 800 голов КРС данная технология окупится менее чем через 1,5 года.

По мнению Перегудова, наиболее современной и экономичной системой по утилизации и переработке навоза является технология разделения (сепарирования) стоков с последующей переработкой отделенной твердой фракции в высококачественные удобрения, подстилку для КРС или топливо для пиролизных теплогенераторов.

Перегудов утверждает, что согласно нормам разделение животноводческих стоков шнековым пресс-сепаратором позволяет снизить объем отстойников в 2,5 раза. Этот эффект достигается за счет сокращения времени выдерживания жидкой фракции в два раза. «Более того, разделение упрощает технологию внесения жидкой фракции навоза в качестве удобрений в поля, снижает сроки хранения и минимизирует вредное влияние на окружающую среду, — замечает он. — А отделенная сепаратором твердая фракция навоза — относительно сухая и рассыпчатая масса без запаха, что является практически идеальным материалом при использовании ее в качестве подстилки для КРС или удобрения».

Как и Закревский, Перегудов рекомендует применять пленочные материалы при строительстве лагун для жидкой фракции. По его подсчетам, это позволяет снизить затраты на сооружение помещений в 15 раз по сравнению с бетонными конструкциями. «Вся система в комплексе доступна даже для малых хозяйств, — говорит специалист. — Например, ее цена для фермы КРС на 0,4-1,2 тыс. голов или свинокомплекса на 8-16 тыс. голов составит около 11-15 млн руб. В эту стоимость войдет оборудование цеха разделения с системой насосных станций, затраты на строительство (до 6 млн руб.), а также пленочные навозонакопители (лагуны) с установленным оборудованием для перемешивания и откачки навоза (до 5-9 млн руб.)».

Печальная статистика

Можно сказать, что все хозяйства в той или иной степени занимаются утилизацией навоза. Но только одни применяют современное оборудование и технику, чтобы использовать навоз в качестве удобрения согласно агрономическим нормам, а другие осуществляют бесконтрольный вывоз на поля в обход всяких правил. Причем последних предприятий большинство. По словам экспертов, отдельной статистики по оснащенности ферм современными очистными сооружениями не ведется, но доля этих предприятий крайне мала.

Однако есть и такие хозяйства, построенные более 20 лет назад, которые, несмотря на устаревшее оборудование, стараются осуществлять утилизацию навоза с соблюдением всех норм, а по возможности и постепенно обновляют оборудование и парк машин.

К таким хозяйствам можно отнести АФ «Гостагай» (Анапа; КРС, овцы). Главный агроном предприятия Сергей Песляк так описывает способ утилизации сырья: «В зимнее время животные у нас содержатся в помещениях, а летом на улице. Зимой навоз из помещений удаляется скреперными установками советского производства, грузится на тачки, расположенные под транспортером, и вывозится в навозохранилище. А летом для такой работы используются трактора, которые вполне успешно удаляют сырье с некрытых площадок. Навозохранилище у нас заглубленное, изготовлено из бетонных плит. Сырье перегнивает там около года, после чего вносится на поля навозоразбрасывателями, которые также были произведены еще во времена СССР. После этого поле запахивается». По словам агрария, этот механизм соответствует экологическим нормам и обходится недорого.

Примерно таким же образом удаляют навоз в хозяйстве «Суворова» (Краснодарский край; КРС, свиньи). Генеральный директор предприятия Александр Пелих рассказывает, что для удаления навоза из помещений используются трактора белорусского производства. Сырье, как и в «Гостагае», удаляется в заглубленные бетонные котлованы, а через год вносится на поля, которые принадлежат расположенной по соседству растениеводческой компании. «У экологических служб к нам никаких претензий нет», — утверждает Пелих.

Перегудов, описывая общую ситуацию в отрасли, замечает, что переработкой навоза и других отходов животноводства занимаются в основном современные крупные агрохолдинги, имеющие в активе собственные зерновые компании. В пример специалист приводит такие предприятия, как «Талина » (Саранск; мясопереработка, свиноводство, производство кормов), «Белгородский бекон» (Белгород; свиноводство), «Орелсельпром» (Орел; свиноводство), «Мираторг » (Москва; агропромышленный холдинг). «Эти предприятия, согласно нормам, осуществляют не только утилизацию навоза с животноводческих предприятий, но и его переработку, используя при этом современное оборудование. А получаемое органическое удобрение они применяют на своих полях», — говорит инженер.

Что же касается небольших хозяйств, то тут дело обстоит иначе. Хотя бывают и исключения. Например, интересен опыт находящегося в процессе реконструкции свинокомплекса «СВ-Поволжское» (Тольятти, агропромышленный холдинг), где к решению вопроса переработки отходов подошли комплексно. Навоз на предприятии будет перерабатываться в органическое удобрение путем разделения на фракции и ускоренного компостирования, а переработанные отходы собственной бойни планируется использоваться в качестве белковой добавки к кормам. Другой пример — птицефабрика «Ивановский Бройлер» (Ивановская область, полный цикл производства куриного мяса), которая ежегодно осуществляет реализацию населению более 4,5 тыс. т компоста, получаемого в результате сепарации жидких стоков помета.

Также, по словам Перегудова, некоторые фермы КРС молочного направления перерабатывают стоки навоза сепараторами и биореакторами в подстилку для коров.

К сожалению, таких хозяйств единицы, сетует специалист, хотя данная технология уже более 10 лет эффективно используется фермерами в Европе.

В то же время Скороходов из института «Белагротех» замечает, что на настоящий момент в России не существует рынка органических удобрений, а стало быть, у небольших хозяйств могут возникнуть серьезные проблемы с реализацией такого товара.

Строительство и эксплуатация в республике крупных ферм с бесподстилочным содержанием животных и гидравлической уборкой навоза привело к резкому обострению экологической обстановки в районах их расположения. Это обусловило необходимость проведения контроля качества воды, потребляемой на фермах на хозяйственно-питьевые нужды. В системе охраны здоровья животных проблема контроля качества питьевой воды наряду с контролем качества кормов должна занимать особое место. Официальная статистика, публикуемая органами государственного контроля, показывает, что 25% всех проб питьевой воды по химическим показателям и около 10% по микробиологическим не соответствует гигиеническим нормам.
Увеличение производства продукции животноводства в стране предусматривается главным образом за счёт внедрения интенсивных технологий и новой техники, повышения продуктивности скота, а также широкого использования различных форм хозяйствования.
Создание новых машин и оборудования должно основываться на строго научном подходе, для комплексной механизации сельскохозяйственного производства.
Внедрение в производство новой системы машин позволит уменьшить эксплуатационные издержки на получение продукции животноводства на 20.25% снизить прямые затраты труда в 1,5.1,9 раза по сравнению с уровнем достигнутым в хозяйствах страны.
В водоснабжении широкое распространение получают автоматизированые установки с пневморегуляторами и применением современного регулируемого электропривода насосных агрегатов, обеспечивающих высокое качество и надёжность подачи воды на фермы при минимальных затратах на техническое обслуживание.
Цель исследования – установление особенностей водообеспечения фермы крупного рогатого скота, качества воды и источников водоснабжения.
    ОБЩИЕ СВЕДЕНИЯ ПО ТЕМЕ И ЕЕ ОБОСНОВАНИЕ
Животноводство является наиболее крупным потребителем воды в сельской местности, на его долю в республике приходится около 30% от общего забора питьевой воды в сельском хозяйстве. На производство 1 т молока расходуется не менее 3 м3 свежей воды, 1 т говядины – 30 м3, свинины – 88 м3, общее потребление воды зависит от специализации ферм, их мощности и уровня механизации производственных процессов, системы и способа содержания животных, технологии производства.
Водный баланс фермы или комплекса зависит от глубины скважины и производительности водоподъемного оборудования. При глубине скважины от 40 до 80 м для подъема 1 м3 воды необходимо затратить от 0,9 до 1,0 кВт электроэнергии.
Правильная организация водоснабжения имеет исключительное значение для эффективной работы фермы, т.к. обеспечивает нормальное выполнение производственно-зоотехнических процессов и противопожарную безопасность, улучшает условия содержания животных, повышает производительность и культуру труда обслуживающего персонала, увеличивает продуктивность животных, улучшает качество продукции и снижает ее себестоимость.
Качество воды в зависимости от назначения должно удовлетворять определенным требованиям.
Система водоснабжения – это комплекс взаимосвязанных машин, оборудования и инженерных сооружений, предназначенных для забора воды из источников, подъема ее на высоту, очистки, хранения и подачи к местам потребления.
В зависимости от особенностей каждой водопроводной сети можно рекомендовать соответствующий тип аппаратуры автоматического управления насосной станции.
Отечественная промышленность производит полностью укомплектованные автоматические водоподъемные установки, не требующие постоянного наблюдения. Полностью решены принципиальные вопросы, связанные с созданием автоматизированных систем управления крупными объектами сельскохозяйственного водоснабжения с использованием ЭВМ.
В настоящее время для подъема воды из шахтных колодцев и открытых водоемов применяется различное оборудование: консольные насосы типа К и КМ, водоструйные, ленточные, шнуровые и пневматические установки.
Это оборудование имеет большую металлоемкость и не всегда удовлетворяет эксплуатационным требованиям. Для забора воды из открытых источников необходимо устанавливать водоподъемные сооружения.
Для шахтных колодцев разработаны конструкции плавающих насосов: ПН-25 и ППН-25. Однако многоступенчатость расположения нагнетательного патрубка ограничивает применение таких насосов в шахтных колодцах с небольшим слоем воды.
Использование электродвигателей нормальной серии АОП, в колодцах ввиду повышенной влажности значительно снижает надежность этих установок. Перечисленных недостатков лишены малоблочные насосы с водозаполненными электродвигателями и нормальной или повышенной частотой вращения. Преимущество таких насосов: небольшая масса и размеры, более интенсивное охлаждение двигателя перекачиваемой водой: работа подшипников в чистой воде, заливаемой в полость электродвигателя, что увеличивает срок их службы, возможность избежать строительства водозаборных сооружений и зданий насосных станций.
Животные должны получать воду хорошего качества, в достаточном количестве и в любое время суток. Общий расход воды определяется видом и числом животных, суточными нормами поения и характером производственных процессов.
В разное время года и разное время суток расход воды разный, он зависит от способа содержания животных, погодных условий, рациона кормления. При использовании системы водоснабжения, на животноводческих объектах устанавливаются расходы воды за сутки, часы, секунды и в отдельные периоды за год.
По величине суточного расхода воды определяется годовое потребление и себестоимость 1 кубического метра воды, по максимальному расходу, требуемые емкости резервуаров, мощности насосных установок, размеры очистных сооружений.
Суточная потребность ферм и комплексов в воде (без учета расхода на пожарные нужды, часовой и суточной равномерности) обычно велика, поэтому необходимо обеспечить постоянную работоспособность системы водоснабжения. Для поения взрослых животных используется вода с температурой 12-14°С, молодняка – 15-16°С, в холодный период требуется подогрев воды. Качество питьевой воды предоставлено в таблице:
Таблица 1

Таким образом, разработка механизированной и автоматизированной поточно-технологической линии водоснабжения и автопоения животноводческих предприятий является одним из основных условий получения высококачественной продукции животноводства.
    ХАРАКТЕРИСТИКА ЖИВОТНОВОДЧЕСКОЙ ФЕРМЫ
Животноводческая ферма - это специальное сельскохозяйственное предприятие, предназначенное для производства продукции животноводства.
Комплексы по откорму свиней необходимо размещать на ровной с небольшим уклоном территории, имеющей склон для дождевых и талых вод.
Участок должен размещаться с подветренной стороны относительно к господствующим ветрам и находящийся на расстоянии не менее 300м от населенного пункта.
Ферма располагается по рельефу, ниже жилого сектора, а в пределах ее территории производственные постройки возводятся ниже вспомогательных. Предусмотрены зеленые насаждения по границе фермы, между отдельными зданиями, а также вдоль дорог, которые подходят к ферме.
В данном курсовом проекте рассматривается свиноводческая ферма для содержания в нем единовременно 6000 голов откормочного молодняка - поросята – 2100 гол., 1 период откорма – 1950 гол., 2 период откорма – 1700 гол.
Технологическим процессом предусматривается через 10 дней (ритм производства) поступление группы поросят из станков или свинарника для поросят-отъемышей в возрасте 100 дней со средней живой массой 28 кг. Среднесуточный привес на откорме предусмотрен 450 грамм. Общий привес за период откорма 84 кг за 186 дней. При достижении живой массы 112 кг в возрасте 9-10 месяцев откормленные свиньи забиваются.
Содержание свиней безвыгульное в групповых станках размером 3900х5000 мм. Станки расположены в 2 ряда с 1-м совмещенными кормослужебными проходом. Станковая площадь на 1 голову 0,9-1,19м, фронт кормления 29 и 30,6 см. Освещение в свинарнике в дневное время естественное (1:10), в ночное – электрическое. В станках свиньи содержатся на подстилке из измельченной соломы. Пол имеет уклон к зоне дефекации 5%. Ограждение групповых станков из панелей высотой 1000 мм. Ограждение станков в зоне дефекации решетчатое и сплошное в зоне логова. Кормушки в станках железобетонные, групповые. В свинарнике предусмотрены помещения производственного и обслуживающего назначения.
Кормление откормочного молодняка осуществляется 27,3% концентрированными кормами, 60,6% корнеплодами и 12,1% комбисилосом.
Питательная ценность 1 кг корма принята усредненная:
Концентрированных кормов – 1,1 к.ед.;
Корнеклубнеплодов – 0,16 к. ед.;
Комбесилоса – 0,2 к. ед.
Кормление свиней 2-х разовое. Раздача кормов – мобильным электрифицированным кормораздатчиком КС-1,5.
Примерный рацион концентратно– картофельного типа для откорма свиней (на одну голову в сутки) представлен в таблице 2:
Таблица 2 – Примерный рацион концентратно–картофельного типа для откорма свиней (на одну голову в сутки)
Корм Живая масса свиней, кг
15-30 30-40 40-60 60-80 80-100
Зерновая смесь, кг 1,2 1,3 1,5 2,0 2,8
Обрат, кг 0,5 1,0 1,0
Картофель, кг 1,0 2,0 3,0 3,0 4,0
Мел, г 12 13 15 30 30
Соль поваренная, г 12 13 15 30 30

Автопоение свиней обеспечивается с помощью серийных бесчашечных (сосковых) автопоилок в расчете одна автопоилка в станке вместимостью до 25 поросят.
Навозные каналы расположены в станках и перекрыты железобетонными решетками, через которые навоз, протаптываемый животными, попадает в продольный самотечный канал и перемещается в навозонакопитель
Свинарник обслуживают 8 свинарей-операторовя.
Суточный режим труда и отдыха – односменный, двухцикличный, уплотненный; недельный – пятидневная рабочая неделя с 2-мя выходными днями. В обязанности операторов входит: кормление животных, уборка в станках и в помещении, перегон животных, участие в проведении ветработ и взвешивании, соблюдение санитарного порядка в производственном помещении.
    ОПИСАНИЕ РАЗРАБАТЫВАЕМОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА С ОБОСНОВАНИЕМ ВНОСИМЫХ ИЗМЕНЕНИЙ
При организации водоснабжения важно правильно выбрать источник воды.
Источниками водоснабжения могут служить поверхностные (открытые) и подземные (закрытые) водоемы.
Использование открытых водоемов допускается как исключение. Их делят на естественные (реки, озера, ручьи) и искусственные (пруды, каналы и др.). Поверхностные источники более доступны для водоснабжения. Однако вода этих источников часто требует очистки или обеззараживания, что значительно увеличивает ее стоимость. Особенно загрязнена вода у берегов. Поэтому место забора воды должно быть удалено от берега и по возможности расположено на большой глубине.
Как источники водоснабжения подземные воды имеют большое распространение. Как правило, они лучше поверхностных вод по качеству. Подземные (закрытые) источники могут быть двух видов: грунтовые и межпластовые. Воды, залегающие на глубине 40...50 м от поверхности земли (над первым водонепроницаемым слоем), называют грунтовыми. К грунтовым водам относят также подземные воды, залегающие на небольшой глубине (3...5 м от поверхности земли), которые часто называют "верховодками". Эти воды могут загрязняться просачивающимися с поверхности нечистотами. Воды, залегающие между двумя водонепроницаемыми слоями (пластами), называются межпластовыми. Межпластовые воды разделяют на безнапорные и напорные (артезианские). Напорные (артезианские) воды заполняют всю толщу водоносной породы и под давлением поднимаются в колодцах на большую высоту, а иногда и фонтанируют. Безнапорные воды залегают между двумя водонепроницаемыми слоями (пластами) породы, не полностью заполняют слой и имеют свободную поверхность.
Межпластовые воды (напорные и безнапорные) хорошо защищены от поверхностного загрязнения и обладают высокими вкусовыми качествами. Запасы межпластовых вод велики; температура их в течение года изменяется незначительно. Эти источники считаются наилучшими для водоснабжения в сельском хозяйстве.
В данном конкретном случае используется подземный грунтовый источник водозабора с глубиной скважины 39м и очистка воды.
Водозаборные сооружения служат для забора воды из источника. Для забора воды из поверхностных (открытых источников устраивают береговые колодцы или простейшие водозаборы, а для забора воды из подземных (закрытых) источников – шахтные, буровые (трубчатые) и мелко трубчатые колодцы.
Шахтные колодцы обычно сооружают при залегании подземных вод на глубине не более 40 м. Такой колодец представляет собой вертикальную выработку в грунте, врезающуюся в водоносный пласт, и состоит из шахты, водоприемной части и оголовка. Шахту делают квадратного сечения со стороной 1…3 м или круглой диаметром 1…3 м. Для крепления стен шахты применяют дерево, камень, бетон, железобетон, кирпич. Для вентиляции колодца служит труба. Дебит шахтных колодцев часто определяют способом откачки.
В сельскохозяйственном водоснабжении широкое распространение получили центробежные насосы. Они просты по конструкции, надежны и удобны в эксплуатации. Центробежные насосы применяют для подачи воды из открытых источников, шахтных и трубчатых колодцев. Центробежный насос состоит из всасывающего и напорного патрубков и лопастного рабочего колеса, жестко насаженного на вал, который вращается в спиралеобразном корпусе. При вращении рабочего колеса вода, увлекаясь лопастями, начинает вращаться вместе с колесом и под действием центробежной силы отбрасывается от центра колеса к периферии и далее через напорный патрубок в трубопровод водопроводной сети.
Для очистки воды применяют фильтры, контактные осветители. Для УФ-облучения воды применяют установки с органо-ртутными лампами типа БУВ. Эти установки выпускаются закрытого типа с погружением в воду источников облучения и открытого типа. Погружаемые в воду лампы размещают в кварцевых чехлах. Установки можно подключать в любом месте сети водоснабжения.
Сосковые автопоилки ПБП-1А (для поросят-сосунов и поросят-отъемышей) предназначены для поения животных водопроводной водой при индивидуальном и групповом содержании.
Чтобы напиться, животное берет в рот носок корпуса вместе с соском и нажимает на последний до упора в носок. При этом срабатывает надетый на резиновый амортизатор клапан и вода поступает в полость рта животного. При отпускании соска подача воды автоматически прекращается. Резиновые уплотнения и предотвращают подтекание воды при нейтральном положении соска.
Автопоилка устанавливается под углом 60°. Конец соска должен находиться на высоте от пола: для поросят-сосунов и поросят-отъемышей - 220-250 мм; для взрослого поголовья при содержании в групповых станках - 420-450 мм. Для предотвращения попадания в поилку грязи и других включений общая горизонтальная труба для подачи воды к поилкам должна располагаться ниже поилок. Тогда она выполняет и роль отстойника. Для спуска из этой трубы воды с осевшими загрязнениями на конце трубы устанавливают вентиль.
    ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ И ВЫБОР ОБОРУДОВАНИЯ
При выборе источника водоснабжения необходимо учитывать технико- экономические показатели: стоимость сооружений и оборудования для подъема, обработки и транспортировки воды, затраты на эксплуатацию и ремонт и др.
Например, стоимость 1м.куб. воды из источника поверхностного водоснабжения с устройством очистки примерно в 3-5 раз выше, чем стоимость воды из межпластовых источников, которую можно использовать без очистки. Источники водоснабжения выбирают с соответствии с требованиями ГОСТа и согласовывают с органами государственного санитарного надзора.
Определение потребности фермы в воде.
Автопоение.
Потребность фермы в воде на поение животных определяется наличием половозрастных групп животных. Среднесуточный расход воды определяется для отдельных потребителей по формуле:
Q сут.ср = ? qі mі (1)
qі - суточная норма расхода воды одним потребителем,
mі - число потребителей, имеющих одинаковую норму потребления.
Q сут.ср = 2100 * 15 + 1950 * 20 + 1700 * 20 = 104500л

Максимальный расход воды Q сут.max ., с учётом того, животные воду в течение суток потребляют неравномерно, определяется по формуле:
Q сут.max = Q сут.ср. * ? сут, (2)
где? сут – коэффициент суточной неравномерности водопотребления, ? сут = 1,3.
Q сут.max = 104500 * 1,3 = 135850л

Максимальный часовой расход воды Qч max определяется с учётом коэффициента часовой неравномерности? ч =2,5 по формуле:
Qч. max = ?ч * Q сут.max / 24 (3)
Qч. max = 2,5 * 135850 / 24 =14151л

Максимальный секундный расход равен:
Qc max = Q ч max / 3600 (4)
Qc max = 14151 / 3600= 3,93 л

Использование воды на технологические цели
Мойка корнеклубнеплодов
Q м.к. = ?mіkiqі (5)
Q м.к. = 5750 * 5 * 1,2 = 34500 л
Бытовые нужды
Q б.н. = np * kр (6)
Q б.н. = 8 * 50 = 400 л
где np – количество работников фермы
kр – норма расхода воды на одного работника в сутки, л
Неприкосновенный противопожарный запас
Неприкосновенный противопожарный запас Qп.з. определяется исходя из длительности тушения пожара в течение 10 минут из пожарных гидрантов с интенсивностью 10л/с:
Qп.з. = 10мин.*60с*10л = 6000л
Сложив все показатели получаем:
Qсут. = Q сут.max + Q м.к. + Q б.н. + Q п.з. (7)
Qсут. = 135850+ 34500 + 400 + 6000 = 176750л

Гидравлический расчет водопроводной сети
Для подачи воды на производственные и хозяйственно-питьевые нужды животноводческие хозяйства должны быть оборудованы водопроводной сетью. Различают внешнюю и внутреннюю водопроводную сеть.
Внешняя водопроводная сеть - это та часть распределительной сети, которая расположена на территории комплекса или фермы за пределами помещений. Она может быть разветвленной или кольцевой.
Разветвленная, или тупиковая сеть, состоит из отдельных линий. Вода из водонапорной башни проходит по главной магистрали с ответвлениями, которые заканчиваются тупиками. Таким образом, вода поступает к потребителю только с одной стороны. Тупиковая сеть применяется лишь на небольших фермах.
Кольцевая сеть обеспечивает движение воды по замкнутому кругу (кольцу) и подводит ее к потребителю с двух сторон. Кольцевая водопроводная сеть длиннее, чем соответствующая тупиковая, однако у нее имеется немало преимуществ: не застаивается вода, увеличивается пропускная способность сети и другие. Поэтому кольцевую сеть применяют чаще.
Внутренняя водопроводная сеть предназначена для непосредственного распределения воды между потребителями внутри зданий. Для бесперебойной подачи воды на производственные нужды эта сеть выполняется только кольцевой. В производственных зданиях крупных комплексов эту сеть присоединяют к кольцевой сети наружного водопровода двумя вводами раздельно.

Рис.1. Схема наружного водопровода
Расход воды в животноводческих хозяйствах в течение суток неравномерный, и приспособить работу насосных станций к изменениям потребления воды без дополнительных промежуточных резервуаров воды очень трудно. Поэтому при устройстве водопроводных сетей необходимо предусмотреть специальные сооружения для запаса воды на непрерывное питание потребителей.
По способу получения воды из этих сооружений они бывают напорно-регулирующие и безнапорные.
Напорно-регулирующие сооружения создают в водопроводной сети напор, необходимый для распределения нужного количества воды потребителям. К ним относят водонапорные башни и пневматические котлы. Водонапорные башни создают необходимый напор за счет поднятия водонапорного бака на необходимую высоту, а в пневматических котлах - за счет давления сжатого воздуха в пространстве, свободном от воды в герметически закрытом сосуде.
Безнапорные сооружения выполняют в виде подземных резервуаров, вода из которых подается насосами в водонапорную сеть, а затем потребителю.
Основываясь на исходных данных: водоснабжение комплекса по откорму свиней на 6 тыс. голов в год, шахтный колодец и башенная водокачка выбираем схему водоснабжения, включающую в себя также насосную станцию и водопроводную сеть.

      Источник имеет дебит Д = 280 м3/ч
      Напорно-регулирующее сооружение - башенная водокачка или резервуар с Нб = 4,0 м
      Геометрическая разность нивелирных отметок Нг = 0,3.
      Время работы насосной станции Т = 13 часов (работает с 6 до 19 часов).
      Линии водопровода,
      L1 = Hвс = 5,5 м; L2 = 68 м; L3 = 73 м; Ll4 = Нн.
      L5 = 150 м; L6 = 135 м; L7 = 100 м; L8 = 110 м; L9 = 125 м.
      Величина свободного напора в конечной точке водоразбора Нсвн = 4,8 м.
      Насос центробежный (привод ременный).
Таблица 3 - Расход воды по часам суток в процентах от суточного
14-15 15-16 3,0 6,0 6,0 11,5 5,0 5,5 5,5 5,5 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 5,5 4,5 4,0 7,0 2,0 1,0 1,5 1,5
Расчетный расход воды на участках водопроводной сети определяют, начиная о самого отдаленного потребителя до напорно-регулирующего устройства по формуле:
Qр = Qт.р +0,5Qп, (8)
где Qт.р. – транзитный расход воды на участие, м.куб./с
Qп – путевой расход воды на участие, м.куб./с
Qр = 5 + (0,5*0) = 5 м.куб./с
а) Диаметр труб на выходе из башни определяется по формуле:
Д = 2 /?*V (9)
где V – скорость движения воды в трубопроводе,
Д = 2 / 3,14 * 0,5 = 5,6 см
Диаметр подводящих труб принимается 56мм.
б) Высота водонапорного бака, м
H=H C + ?h + (Z Н - Z Б) (10)
где Нс – свободный напор с самого отдаленного и имеющего самую высокую отметку потребителя (для одноэтажных построек Нс=8м);
?h – наибольшая сумма линейных и местных потерь напора.
Н = 8+ 0,025 + 0,3 = 8,325м
Линейные потери напора или давления определяют:
hл = k * (L*V2) / 2dn (11)
где k – коэффициент
L – длина трубы, см
hл = 0,2* (1000 * 0,25) / 2 * 3,5 = 7,14м
Более точно местные потери напора определяют по формуле:
hм =? * V2/2 (12)
где? – коэффициент местного сопротивления;
hм = 0,2*0,25/2 = 0,025м
Потери напора в нагнетательном водопроводе:
L1 + L2 = 10 + 15 = 25м
Линейные потери напора:
hл = 0,02*(25*4) / (2*5,6) = 0,18м
Местные потери напора:
hм = 4 / 2 = 2м
Определяем сумму линейных и местных потерь:
?h = hл + hм (13)
?h = 0,18 + 2 = 2,18м
Определяем величину регулирующей вместимости водонапорной башни (бака):
Vp=Qcyт.max * (dп+dн) / 100 (14)
Vр=121,29 * 20 / 100 = 24,26 м.куб.
Неприкосновенность пожарной вместимости бака:
Vn=0,6(Qc.max+Qп.з.) (15)
Vn=0,6 * (3,51+ 10) = 8,11 м.куб.
Вместимость водонапорных башен (баков) наружных водопроводов:
Vб=Vр+Vn (16)
Уб = 24,26 + 8,11= 32,37 м.куб.

Далее по формуле определяем напор, который должен создать насос
Н насоса = 7,14 + 8,325 + 2,18 + 0,025 = 17,67 м.
Имея расчетные данные: Н насоса = 17,67 м; Qч насоса = 8,31 м3/ч; Qс насоса= 2,3 л/с производим энергетический расчет.
Расчетная мощность приводного двигателя к насосу определяется по формуле
Ррасч. = (17)
где Ррасч. - расчетная мощность приводного двигателя, кВт;
? - плотность воды, кг/м3;
g - ускорение свободного падения, м/с2;
Q с насоса - подача насоса, м3/с;
Н насоса - полный напор насоса, м;
- коэффициент полезного действия насоса;
- коэффициент полезного действия передачи.
? = 1000 кг/м3; = 0,4…0,64; = 1.
и т.д.................

Фильтрационное оборудование на животноводческих фермах используется не только в качестве источника питьевой воды, но и для поддержания требуемого уровня противопожарной подготовки и для очистки сточных вод, загрязненных продуктами жизнедеятельности крупнорогатого скота или птиц.

На фото: установка водоподготовки “Jalshuddhi” – Animal Husbandry.

В развитии животноводческих и рыбных хозяйств очень важное место занимает организация системы водоснабжения и водоотведения. Как правило, фермы располагаются на значительном расстоянии от города, поэтому возможность использования центрального водопровода в качестве источника питьевой воды сведена к минимуму. Как осуществляется водоподготовка животноводческих комплексов? И в чем отличие фильтров для сточных вод, поступающих с мясоперерабатывающих предприятий и птицефабрик?

Виды систем очистки воды в животноводстве

Системы водоснабжения животноводческих ферм и комплексов обязаны обеспечивать подачу воды в необходимых количествах и соответствующего нормам и стандартам качества. Расчетные размеры водопотребления определяются в соответствии с общим расходом воды, определяемом как сумма трех показателей (рис1)

Рис. 1. Система водоподготовки для животноводческих комплексов

Расчетный расход воды на противопожарные нужды в зависимости от количества голов скота колеблется от 5 до 20 литров в секунду (при возникновении необходимости трехчасового тушения пожара). Стотысячный комплекс по производству свинины требует от 3000 кубометров воды в сутки. Суточная норма десятитысячной фермы достигает 600 куб. метров жидкости в сутки. Объем сточных вод с учетом воды, используемой для чистки и уборки помещений, условно можно приравнять к ежедневному расходу питьевых ресурсов.

Таблица 1. Среднегодовой расход свежей воды (в куб. метрах) на 1 т. Перерабатываемого сырья

Мощность мясокомбината (тонн в смену)

Среднегодовой расход свежей воды (на 1 тонну перерабатываемого сырья)

Источники водоснабжения

В качестве источника водоснабжения для животноводческих ферм могут выступать колодцы, артезианские скважины и поверхностные воды. Для небольших комплексов с расходом воды до 40 кубометров в сутки рациональнее всего использовать расположенные близко к поверхности земли подземные воды, перекачиваемые насосными установками через шахтные колодцы.

Артезианская скважина подходит для организации водоснабжения крупных животноводческих ферм. В этом случае расход на организацию водозабора компенсируется выгодой от использования менее мощных фильтров для питьевой воды (исключение составляет обезжелезиватели ).

Фильтрация (аэрация) поверхностных вод – главный этап организации водоподготовки рыбхозов.

Выбор очистных сооружений для животноводческих комплексов зависит от специализации предприятия. Фермы, занимающиеся птице- и мясопереработкой вынуждены дополнительно устанавливать обезжириватели, а также системы очистки от аммиака, взвешенных веществ, условно патогенных и патогенных микроорганизмов. (3, 4)

Используемые источники:

1. Кириллов Н.K. (Чувашская гос. с.-х. акад.). Ветеринарно-санитарный контроль состояния животноводческих объектов Состояние и проблемы ветеринарной санитарии, гигиены и экологии в животноводстве

2. Костенко Ю.Г. Ветеринарно-санитарный контроль при переработке мясного сырья.

3. Санитарные правила и нормы СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод"

4. Санитарные правила и нормы [Для предприятий пищевой и перерабатывающей промышленности]. -2 изд., с изм., и доп.